This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2001 Brazil Team Selection Test, Problem 1

Tags: function , algebra
Find all functions $ f $ defined on real numbers and taking values in the set of real numbers such that $ f(x+y)+f(y+z)+f(z+x) \geq f(x+2y+3z) $ for all real numbers $ x,y,z $. [hide]There is an infinity of such functions. Every function with the property that $ 3 \inf f \geq \sup f $ is a good one. I wonder if there is a way to find all the solutions. It seems very strange.[/hide]

2022 Auckland Mathematical Olympiad, 5

Tags: quadratic , algebra
The teacher wrote on the board the quadratic polyomial $x^2+10x+20$. Then in turn, each of the students came to the board and increased or decreased by $1$ either the coefficient at $x$ or the constant term, but not both at once. As a result, the quadratic polyomial $x^2 + 20x +10$ appeared on the board. Is it true that at some point a quadratic polyomial with integer roots appeared on the board?

2021 BMT, 9

Tags: algebra
Compute the sum of the positive integers $n \le 100$ for which the polynomial $x^n + x + 1$ can be written as the product of at least $2$ polynomials of positive degree with integer coefficients.

1978 IMO Longlists, 52

Let $p$ be a prime and $A = \{a_1, \ldots , a_{p-1} \}$ an arbitrary subset of the set of natural numbers such that none of its elements is divisible by $p$. Let us define a mapping $f$ from $\mathcal P(A)$ (the set of all subsets of $A$) to the set $P = \{0, 1, \ldots, p - 1\}$ in the following way: $(i)$ if $B = \{a_{i_{1}}, \ldots , a_{i_{k}} \} \subset A$ and $\sum_{j=1}^k a_{i_{j}} \equiv n \pmod p$, then $f(B) = n,$ $(ii)$ $f(\emptyset) = 0$, $\emptyset$ being the empty set. Prove that for each $n \in P$ there exists $B \subset A$ such that $f(B) = n.$

2016 Korea Junior Math Olympiad, 1

positive reals $a_1, a_2, . . . $ satisfying (i) $a_{n+1}=a_1^2\cdot a_2^2 \cdot . . . \cdot a_n^2-3$(all positive integers $n$) (ii) $\frac{1}{2}(a_1+\sqrt{a_2-1})$ is positive integer. prove that $\frac{1}{2}(a_1 \cdot a_2 \cdot . . . \cdot a_n + \sqrt{a_{n+1}-1})$ is positive integer

2018 Purple Comet Problems, 5

Tags: algebra
One afternoon at the park there were twice as many dogs as there were people, and there were twice as many people as there were snakes. The sum of the number of eyes plus the number of legs on all of these dogs, people, and snakes was $510$. Find the number of dogs that were at the park.

2021 OMMock - Mexico National Olympiad Mock Exam, 1

Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ that satisfy the following property for all real numbers $x$ and all polynomials $P$ with real coefficients: If $P(f(x)) = 0$, then $f(P(x)) = 0$.

1993 USAMO, 1

Tags: algebra , function
For each integer $\, n \geq 2, \,$ determine, with proof, which of the two positive real numbers $\, a \,$ and $\, b \,$ satisfying \[ a^n = a + 1, \hspace{.3in} b^{2n} = b + 3a \] is larger.

2001 Moldova National Olympiad, Problem 5

Let $a,b,c,d$ be real numbers. Prove that the set $M=\left\{ax^3+bx^2+cx+d|x\in\mathbb R\right\}$ contains no irrational numbers if and only if $a=b=c=0$ and $d$ is rational.

2005 Austria Beginners' Competition, 3

Determine all triples $(x,y,z)$ of real numbers that satisfy all of the following three equations: $$\begin{cases} \lfloor x \rfloor + \{y\} =z \\ \lfloor y \rfloor + \{z\} =x \\ \lfloor z \rfloor + \{x\} =y \end{cases}$$

2018 CMIMC Algebra, 8

Suppose $P$ is a cubic polynomial satisfying $P(0) = 3$ and \[(x^3 - 2x + 1 - P(x))(2x^3 - 5x^2 + 4 - P(x))\leq 0\] for all $x\in\mathbb R$. Determine all possible values of $P(-1)$.

1963 Swedish Mathematical Competition., 6

The real-valued function $f(x)$ is defined on the reals. It satisfies $|f(x)| \le A$, $|f''(x)| \le B$ for some positive $A, B$ (and all $x$). Show that $|f'(x)| \le C$, for some fixed$ C$, which depends only on $A$ and $B$. What is the smallest possible value of $C$?

2010 Iran MO (3rd Round), 1

suppose that polynomial $p(x)=x^{2010}\pm x^{2009}\pm...\pm x\pm 1$ does not have a real root. what is the maximum number of coefficients to be $-1$?(14 points)

2021 CMIMC, 6

Tags: algebra
Let $P(x), Q(x), $ and $R(x)$ be three monic quadratic polynomials with only real roots, satisfying $$P(Q(x))=(x-1)(x-3)(x-5)(x-7)$$$$Q(R(x))=(x-2)(x-4)(x-6)(x-8)$$ for all real numbers $x.$ What is $P(0)+Q(0)+R(0)?$ [i]Proposed by Kyle Lee[/i]

2020 CIIM, 2

Find all triples of positive integers $(a,b,c)$ such that the following equations are both true: I- $a^2+b^2=c^2$ II- $a^3+b^3+1=(c-1)^3$

2024 Rioplatense Mathematical Olympiad, 3

Given a set $S$ of integers, an allowed operation consists of the following three steps: $\bullet$ Choose a positive integer $n$. $\bullet$ Choose $n+1$ elements $a_0, a_1, \dots, a_n \in S$, not necessarily distinct. $\bullet$ Add to the set $S$ all the integer roots of the polynomial $a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$. Beto must choose an initial set $S$ and perform several allowed operations, so that at the end of the process $S$ contains among its elements the integers $1, 2, 3, \dots, 2023, 2024$. Determine the smallest $k$ for which there exists an initial set $S$ with $k$ elements that allows Beto to achieve his objective.

2019 Iran Team Selection Test, 5

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x,y\in \mathbb{R}$: $$f\left(f(x)^2-y^2\right)^2+f(2xy)^2=f\left(x^2+y^2\right)^2$$ [i]Proposed by Ali Behrouz - Mojtaba Zare Bidaki[/i]

2013 Waseda University Entrance Examination, 2

For a complex number $z=1+2\sqrt{6}i$ and natural number $n=1,\ 2,\ 3,\ \cdots$, express the complex number $z^n$ in using real numbers $a_n,\ b_n$ as $z^n=a_n+b_ni$. Answer the following questions. (1) Show that $a_n^2+b_n^2=5^{2n}\ (n=1,\ 2,\ 3,\ \cdots).$ (2) Find the constants $p,\ q$ such that $a_{n+2}=pa_{n+1}+qa_n$ holds for all $n$. (3) Show that $a_n$ is not a multiple of $5$ for any $n$. (4) Show that $z^n\ (n=1,\ 2,\ 3,\ \cdots)$ is not a real number.

1986 Swedish Mathematical Competition, 3

Tags: algebra , rational
Let $N \ge 3$ be a positive integer. For every pair $(a,b)$ of integers with $1 \le a <b \le N$ consider the quotient $q = b/a$. Show that the pairs with $q < 2$ are equally numbered as those with $q > 2$.

2004 Federal Competition For Advanced Students, Part 1, 4

Each of the $2N = 2004$ real numbers $x_1, x_2, \ldots , x_{2004}$ equals either $\sqrt 2 -1 $ or $\sqrt 2 +1$. Can the sum $\sum_{k=1}^N x_{2k-1}x_2k$ take the value $2004$? Which integral values can this sum take?

2014 District Olympiad, 1

Solve for $z\in \mathbb{C}$ the equation : \[ |z-|z+1||=|z+|z-1|| \]

1990 Greece National Olympiad, 2

Tags: algebra , radical
Find all real solutions of $\sqrt{x-1}+\sqrt{x^2-1}=\sqrt{x^3}$

1998 Federal Competition For Advanced Students, Part 2, 2

Let $P(x) = x^3 - px^2 + qx - r$ be a cubic polynomial with integer roots $a, b, c$. [b](a)[/b] Show that the greatest common divisor of $p, q, r$ is equal to $1$ if the greatest common divisor of $a, b, c$ is equal to $1$. [b](b)[/b] What are the roots of polynomial $Q(x) = x^3-98x^2+98sx-98t$ with $s, t$ positive integers.

2010 Cuba MO, 1

Determine all the integers $a$ and $b$, such that $\sqrt{2010 + 2 \sqrt{2009}}$ be a solution of the equation $x^2 + ax + b = 0$. Prove that for such $a$ and $b$ the number$\sqrt{2010 - 2 \sqrt{2009}}$ is not a solution to the given equation.

2023 China Northern MO, 3

Find all solutions of the equation $$sin\pi \sqrt x+cos\pi \sqrt x=(-1)^{\lfloor \sqrt x \rfloor }$$