Found problems: 1065
2014 Hanoi Open Mathematics Competitions, 6
Let $a,b,c$ be the length sides of a given triangle and $x,y,z$ be the sides length of bisectrices, respectively. Prove the following inequality $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
2012 Iran MO (3rd Round), 4
The incircle of triangle $ABC$ for which $AB\neq AC$, is tangent to sides $BC,CA$ and $AB$ in points $D,E$ and $F$ respectively. Perpendicular from $D$ to $EF$ intersects side $AB$ at $X$, and the second intersection point of circumcircles of triangles $AEF$ and $ABC$ is $T$. Prove that $TX\perp TF$.
[i]Proposed By Pedram Safaei[/i]
2008 Saint Petersburg Mathematical Olympiad, 3
Pentagon $ABCDE$ has circle $S$ inscribed into it. Side $BC$ is tangent to $S$ at point $K$. If $AB=BC=CD$, prove that angle $EKB$ is a right angle.
2011 AMC 12/AHSME, 13
Triangle $ABC$ has side-lengths $AB=12$, $BC=24$, and $AC=18$. The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N$. What is the perimeter of $\triangle AMN$?
$ \textbf{(A)}\ 27 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 33 \qquad
\textbf{(D)}\ 36 \qquad
\textbf{(E)}\ 42
$
2022 European Mathematical Cup, 3
Let $ABC$ be an acute-angled triangle with $AC > BC$, with incircle $\tau$ centered at $I$ which touches $BC$ and $AC$ at points $D$ and $E$, respectively. The point $M$ on $\tau$ is such that $BM \parallel DE$ and $M$ and $B$ lie on the same halfplane with respect to the angle bisector of $\angle ACB$. Let $F$ and $H$ be the intersections of $\tau$ with $BM$ and $CM$ different from $M$, respectively. Let $J$ be a point on the line $AC$ such that $JM \parallel EH$. Let $K$ be the intersection of $JF$ and $\tau$ different from $F$. Prove that $ME \parallel KH$.
2016 Singapore Junior Math Olympiad, 3
In the triangle $ABC$, $\angle A=90^\circ$, the bisector of $\angle B$ meets the altitude $AD$ at the point $E$, and the bisector of $\angle CAD$ meets the side $CD$ at $F$. The line through $F$ perpendicular to $BC$ intersects $AC$ at $G$. Prove that $B,E,G$ are collinear.
2010 China Team Selection Test, 1
Let $ABCD$ be a convex quadrilateral with $A,B,C,D$ concyclic. Assume $\angle ADC$ is acute and $\frac{AB}{BC}=\frac{DA}{CD}$. Let $\Gamma$ be a circle through $A$ and $D$, tangent to $AB$, and let $E$ be a point on $\Gamma$ and inside $ABCD$.
Prove that $AE\perp EC$ if and only if $\frac{AE}{AB}-\frac{ED}{AD}=1$.
1998 AIME Problems, 12
Let $ABC$ be equilateral, and $D, E,$ and $F$ be the midpoints of $\overline{BC}, \overline{CA},$ and $\overline{AB},$ respectively. There exist points $P, Q,$ and $R$ on $\overline{DE}, \overline{EF},$ and $\overline{FD},$ respectively, with the property that $P$ is on $\overline{CQ}, Q$ is on $\overline{AR},$ and $R$ is on $\overline{BP}.$ The ratio of the area of triangle $ABC$ to the area of triangle $PQR$ is $a+b\sqrt{c},$ where $a, b$ and $c$ are integers, and $c$ is not divisible by the square of any prime. What is $a^{2}+b^{2}+c^{2}$?
2011 Singapore Junior Math Olympiad, 2
Two circles $\Gamma_1, \Gamma_2$ with radii $r_i, r_2$, respectively, touch internally at the point $P$. A tangent parallel to the diameter through $P$ touches $ \Gamma_1$ at $R$ and intersects $\Gamma_2$ at $M$ and $N$. Prove that $PR$ bisects $\angle MPN$.
2003 IMO, 4
Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
2011 Mongolia Team Selection Test, 2
Given a triangle $ABC$, the internal and external bisectors of angle $A$ intersect $BC$ at points $D$ and $E$ respectively. Let $F$ be the point (different from $A$) where line $AC$ intersects the circle $w$ with diameter $DE$. Finally, draw the tangent at $A$ to the circumcircle of triangle $ABF$, and let it hit $w$ at $A$ and $G$. Prove that $AF=AG$.
2018 District Olympiad, 4
Let $ABC$ be a triangle with $\angle A = 80^o$ and $\angle C = 30^o$. Consider the point $M$ inside the triangle $ABC$ so that $\angle MAC= 60^o$ and $\angle MCA = 20^o$. If $N$ is the intersection of the lines $BM$ and $AC$ to show that a $MN$ is the bisector of the angle $\angle AMC$.
2016 Saint Petersburg Mathematical Olympiad, 3
On the side $AB$ of the non-isosceles triangle $ABC$, let the points $P$ and $Q$ be so that $AC = AP$ and $BC = BQ$. The perpendicular bisector of the segment $PQ$ intersects the angle bisector of the $\angle C$ at the point $R$ (inside the triangle). Prove that $\angle ACB + \angle PRQ = 180^o$.
May Olympiad L1 - geometry, 2000.2
Let $ABC$ be a right triangle in $A$ , whose leg measures $1$ cm. The bisector of the angle $BAC$ cuts the hypotenuse in $R$, the perpendicular to $AR$ on $R$ , cuts the side $AB$ at its midpoint. Find the measurement of the side $AB$ .
2019 China Team Selection Test, 1
Cyclic quadrilateral $ABCD$ has circumcircle $(O)$. Points $M$ and $N$ are the midpoints of $BC$ and $CD$, and $E$ and $F$ lie on $AB$ and $AD$ respectively such that $EF$ passes through $O$ and $EO=OF$. Let $EN$ meet $FM$ at $P$. Denote $S$ as the circumcenter of $\triangle PEF$. Line $PO$ intersects $AD$ and $BA$ at $Q$ and $R$ respectively. Suppose $OSPC$ is a parallelogram. Prove that $AQ=AR$.
2010 Baltic Way, 13
In an acute triangle $ABC$, the segment $CD$ is an altitude and $H$ is the orthocentre. Given that the circumcentre of the triangle lies on the line containing the bisector of the angle $DHB$, determine all possible values of $\angle CAB$.
Denmark (Mohr) - geometry, 2008.4
In triangle $ABC$ we have $AB = 2, AC = 6$ and $\angle A = 120^o$ . The bisector of angle $A$ intersects the side BC at the point $D$. Determine the length of $AD$. The answer must be given as a fraction with integer numerator and denominator.
2004 Cuba MO, 3
In the non-isosceles $\vartriangle ABC$, the interior bisectors of vertices $B$ and $C$ are drawn, which cut the sides $AC$ and $AB$ at $E$ and $F$ respectively.The line $EF$ cuts the extension of side $BC$ at $T$. In the side$ BC$ a point D is located, so that $\frac{DB}{DC} = \frac{TB}{TC}$. Prove that $AT$ is the exterior bisector of angle $A$.
2005 All-Russian Olympiad Regional Round, 9.4
9.4, 10.3 Let $I$ be an incenter of $ABC$ ($AB<BC$), $M$ is a midpoint of $AC$, $N$ is a midpoint of circumcircle's arc $ABC$. Prove that $\angle IMA=\angle INB$.
([i]A. Badzyan[/i])
2014 Iran MO (3rd Round), 2
$\triangle{ABC}$ is isosceles$(AB=AC)$. Points $P$ and $Q$ exist inside the triangle such that $Q$ lies inside $\widehat{PAC}$ and $\widehat{PAQ} = \frac{\widehat{BAC}}{2}$. We also have $BP=PQ=CQ$.Let $X$ and $Y$ be the intersection points of $(AP,BQ)$ and $(AQ,CP)$ respectively. Prove that quadrilateral $PQYX$ is cyclic. [i](20 Points)[/i]
2018 Bulgaria EGMO TST, 1
The angle bisectors at $A$ and $C$ in a non-isosceles triangle $ABC$ with incenter $I$ intersect its circumcircle $k$ at $A_0$ and $C_0$, respectively. The line through $I$, parallel to $AC$, intersects $A_0C_0$ at $P$. Prove that $PB$ is tangent to $k$.
2020 Peru Cono Sur TST., P3
Let $ABC$ be an acute triangle with $| AB | > | AC |$. Let $D$ be the foot of the altitude from $A$ to $BC$, let $K$ be the intersection of $AD$ with the internal bisector of angle $B$, Let $M$ be the foot of the perpendicular from $B$ to $CK$ (it could be in the extension of segment $CK$) and$ N$ the intersection of $BM$ and $AK$ (it could be in the extension of the segments). Let $T$ be the intersection of$ AC$ with the line that passes through $N$ and parallel to $DM$. Prove that $BM$ is the internal bisector of the angle $\angle TBC$
2013 All-Russian Olympiad, 2
Acute-angled triangle $ABC$ is inscribed into circle $\Omega$. Lines tangent to $\Omega$ at $B$ and $C$ intersect at $P$. Points $D$ and $E$ are on $AB$ and $AC$ such that $PD$ and $PE$ are perpendicular to $AB$ and $AC$ respectively. Prove that the orthocentre of triangle $ADE$ is the midpoint of $BC$.
2002 Turkey Team Selection Test, 2
In a triangle $ABC$, the angle bisector of $\widehat{ABC}$ meets $[AC]$ at $D$, and the angle bisector of $\widehat{BCA}$ meets $[AB]$ at $E$. Let $X$ be the intersection of the lines $BD$ and $CE$ where $|BX|=\sqrt 3|XD|$ ve $|XE|=(\sqrt 3 - 1)|XC|$. Find the angles of triangle $ABC$.
Kyiv City MO Seniors 2003+ geometry, 2007.10.3
The points $ P, Q$ are given on the plane, which are the points of intersection of the angle bisector $AL$ of some triangle $ABC$ with an inscribed circle, and the point $W$ is the intersection of the angle bisector $AL$ with a circumscribed circle other than the vertex $A$.
a) Find the geometric locus of the possible location of the vertex $A$ of the triangle $ABC$.
b) Find the geometric locus of the possible location of the vertex $B$ of the triangle $ABC$.