This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

1999 Baltic Way, 12

In a triangle $ABC$ it is given that $2AB=AC+BC$. Prove that the incentre of $\triangle ABC$, the circumcentre of $\triangle ABC$, and the midpoints of $AC$ and $BC$ are concyclic.

2023 4th Memorial "Aleksandar Blazhevski-Cane", P4

Let $ABCD$ be a cyclic quadrilateral such that $AB = AD + BC$ and $CD < AB$. The diagonals $AC$ and $BD$ intersect at $P$, while the lines $AD$ and $BC$ intersect at $Q$. The angle bisector of $\angle APB$ meets $AB$ at $T$. Show that the circumcenter of the triangle $CTD$ lies on the circumcircle of the triangle $CQD$. [i]Proposed by Nikola Velov[/i]

2003 China Team Selection Test, 1

$ABC$ is an acute-angled triangle. Let $D$ be the point on $BC$ such that $AD$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $AC,AB$ respectively. Suppose the lines $BE$ and $CF$ meet at $H$. The circumcircle of triangle $AFH$ meets $BE$ at $G$ (apart from $H$). Prove that the triangle constructed from $BG$, $GE$ and $BF$ is right-angled.

2010 All-Russian Olympiad, 2

Into triangle $ABC$ gives point $K$ lies on bisector of $ \angle BAC$. Line $CK$ intersect circumcircle $ \omega$ of triangle $ABC$ at $M \neq C$. Circle $ \Omega$ passes through $A$, touch $CM$ at $K$ and intersect segment $AB$ at $P \neq A$ and $\omega $ at $Q \neq A$. Prove, that $P$, $Q$, $M$ lies at one line.

2007 Turkey Team Selection Test, 2

Two different points $A$ and $B$ and a circle $\omega$ that passes through $A$ and $B$ are given. $P$ is a variable point on $\omega$ (different from $A$ and $B$). $M$ is a point such that $MP$ is the bisector of the angle $\angle{APB}$ ($M$ lies outside of $\omega$) and $MP=AP+BP$. Find the geometrical locus of $M$.

2004 Korea - Final Round, 1

An isosceles triangle with $AB=AC$ has an inscribed circle $O$, which touches its sides $BC,CA,AB$ at $K,L,M$ respectively. The lines $OL$ and $KM$ intersect at $N$; the lines $BN$ and $CA$ intersect at $Q$. Let $P$ be the foot of the perpendicular from $A$ on $BQ$. Suppose that $BP=AP+2\cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?

2012 Indonesia MO, 3

Given an acute triangle $ABC$ with $AB>AC$ that has circumcenter $O$. Line $BO$ and $CO$ meet the bisector of $\angle BAC$ at $P$ and $Q$, respectively. Moreover, line $BQ$ and $CP$ meet at $R$. Show that $AR$ is perpendicular to $BC$. [i]Proposer: Soewono and Fajar Yuliawan[/i]

2024 Canadian Junior Mathematical Olympiad, 3

Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.

2003 All-Russian Olympiad Regional Round, 11.7

Given a tetrahedron $ABCD.$ The sphere $\omega$ inscribed in it touches the face $ABC$ at point $T$. Sphere $\omega' $ touches face $ABC$ at point $T'$ and extensions of faces $ABD$, $BCD$, $CAD$. Prove that the lines $AT$ and $AT'$ are symmetric wrt bisector of angle $\angle BAC$

1990 Greece National Olympiad, 1

Let $ABC$ be a right triangle with $\angle A=90^o$ and $AB<AC$. Let $AH,AD,AM$ be altitude, angle bisector and median respectively. Prove that $\frac{BD}{CD}<\frac{HD}{MD}.$

2013 AMC 12/AHSME, 24

Let $ABC$ be a triangle where $M$ is the midpoint of $\overline{AC}$, and $\overline{CN}$ is the angle bisector of $\angle ACB$ with $N$ on $\overline{AB}$. Let $X$ be the intersection of the median $\overline{BM}$ and the bisector $\overline{CN}$. In addition $\bigtriangleup BXN$ is equilateral and $AC=2$. What is $BN^2$? $\textbf{(A)}\ \frac{10-6\sqrt{2}}{7} \qquad\textbf{(B)}\ \frac{2}{9} \qquad\textbf{(C)}\ \frac{5\sqrt{2} - 3\sqrt{3}}{8} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{6} \qquad\textbf{(E)}\ \frac{3\sqrt{3} - 4}{5}$.

1998 Korea Junior Math Olympiad, 7

$O$ is a circumcircle of non-isosceles triangle $ABC$ and the angle bisector of $A$ meets $BC$ at $D$. If the line perpendicular to $BC$ passing through $D$ meets $AO$ at $E$, show that $ADE$ is an isosceles triangle.

2019 Yasinsky Geometry Olympiad, p6

In an acute triangle $ABC$ , the bisector of angle $\angle A$ intersects the circumscribed circle of the triangle $ABC$ at the point $W$. From point $W$ , a parallel is drawn to the side $AB$, which intersects this circle at the point $F \ne W$. Describe the construction of the triangle $ABC$, if given are the segments $FA$ , $FW$ and $\angle FAC$. (Andrey Mostovy)

2018 Sharygin Geometry Olympiad, 3

Let $ABC$ be a triangle with $\angle A = 60^\circ$, and $AA', BB', CC'$ be its internal angle bisectors. Prove that $\angle B'A'C' \le 60^\circ$.

1972 IMO Longlists, 12

A circle $k = (S, r)$ is given and a hexagon $AA'BB'CC'$ inscribed in it. The lengths of sides of the hexagon satisfy $AA' = A'B, BB' = B'C, CC' = C'A$. Prove that the area $P$ of triangle $ABC$ is not greater than the area $P'$ of triangle $A'B'C'$. When does $P = P'$ hold?

1989 China Team Selection Test, 2

$AD$ is the altitude on side $BC$ of triangle $ABC$. If $BC+AD-AB-AC = 0$, find the range of $\angle BAC$. [i]Alternative formulation.[/i] Let $AD$ be the altitude of triangle $ABC$ to the side $BC$. If $BC+AD=AB+AC$, then find the range of $\angle{A}$.

1990 IMO Longlists, 36

Let $ ABC$ be a triangle, and let the angle bisectors of its angles $ CAB$ and $ ABC$ meet the sides $ BC$ and $ CA$ at the points $ D$ and $ F$, respectively. The lines $ AD$ and $ BF$ meet the line through the point $ C$ parallel to $ AB$ at the points $ E$ and $ G$ respectively, and we have $ FG \equal{} DE$. Prove that $ CA \equal{} CB$. [i]Original formulation:[/i] Let $ ABC$ be a triangle and $ L$ the line through $ C$ parallel to the side $ AB.$ Let the internal bisector of the angle at $ A$ meet the side $ BC$ at $ D$ and the line $ L$ at $ E$ and let the internal bisector of the angle at $ B$ meet the side $ AC$ at $ F$ and the line $ L$ at $ G.$ If $ GF \equal{} DE,$ prove that $ AC \equal{} BC.$

1999 India National Olympiad, 1

Let $ABC$ be an acute-angled triangle in which $D,E,F$ are points on $BC,CA,AB$ respectively such that $AD \perp BC$;$AE = BC$; and $CF$ bisects $\angle C$ internally, Suppose $CF$ meets $AD$ and $DE$ in $M$ and $N$ respectively. If $FM$$= 2$, $MN =1$, $NC=3$, find the perimeter of $\Delta ABC$.

2000 Federal Competition For Advanced Students, Part 2, 1

In a non-equilateral acute-angled triangle $ABC$ with $\angle C = 60^\circ$, $U$ is the circumcenter, $H$ the orthocenter and $D$ the intersection of $AH$ and $BC$. Prove that the Euler line $HU$ bisects the angle $BHD$.

2007 Iran Team Selection Test, 1

In triangle $ABC$, $M$ is midpoint of $AC$, and $D$ is a point on $BC$ such that $DB=DM$. We know that $2BC^{2}-AC^{2}=AB.AC$. Prove that \[BD.DC=\frac{AC^{2}.AB}{2(AB+AC)}\]

2000 APMO, 3

Let $ABC$ be a triangle. Let $M$ and $N$ be the points in which the median and the angle bisector, respectively, at $A$ meet the side $BC$. Let $Q$ and $P$ be the points in which the perpendicular at $N$ to $NA$ meets $MA$ and $BA$, respectively. And $O$ the point in which the perpendicular at $P$ to $BA$ meets $AN$ produced. Prove that $QO$ is perpendicular to $BC$.

2013 Math Prize for Girls Olympiad, 2

Say that a (nondegenerate) triangle is [i]funny[/i] if it satisfies the following condition: the altitude, median, and angle bisector drawn from one of the vertices divide the triangle into 4 non-overlapping triangles whose areas form (in some order) a 4-term arithmetic sequence. (One of these 4 triangles is allowed to be degenerate.) Find with proof all funny triangles.

2004 Junior Balkan Team Selection Tests - Moldova, 7

Let the triangle $ABC$ have area $1$. The interior bisectors of the angles $\angle BAC,\angle ABC, \angle BCA$ intersect the sides $(BC), (AC), (AB) $ and the circumscribed circle of the respective triangle $ABC$ at the points $L$ and $G, N$ and $F, Q$ and $E$. The lines $EF, FG,GE$ intersect the bisectors $(AL), (CQ) ,(BN)$ respectively at points $P, M, R$. Determine the area of the hexagon $LMNPR$.

2013 Tournament of Towns, 3

Assume that $C$ is a right angle of triangle $ABC$ and $N$ is a midpoint of the semicircle, constructed on $CB$ as on diameter externally. Prove that $AN$ divides the bisector of angle $C$ in half.

2004 Vietnam National Olympiad, 2

In a triangle $ ABC$, the bisector of $ \angle ACB$ cuts the side $ AB$ at $ D$. An arbitrary circle $ (O)$ passing through $ C$ and $ D$ meets the lines $ BC$ and $ AC$ at $ M$ and $ N$ (different from $ C$), respectively. (a) Prove that there is a circle $ (S)$ touching $ DM$ at $ M$ and $ DN$ at $ N$. (b) If circle $ (S)$ intersects the lines $ BC$ and $ CA$ again at $ P$ and $ Q$ respectively, prove that the lengths of the segments $ MP$ and $ NQ$ are constant as $ (O)$ varies.