This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 68

2015 Belarus Team Selection Test, 1

A circle intersects a parabola at four distinct points. Let $M$ and $N$ be the midpoints of the arcs of the circle which are outside the parabola. Prove that the line $MN$ is perpendicular to the axis of the parabola. I. Voronovich

2023 Thailand TST, 1

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2013 Czech-Polish-Slovak Match, 3

Let ${ABC}$ be a triangle inscribed in a circle. Point ${P}$ is the center of the arc ${BAC}$. The circle with the diameter ${CP}$ intersects the angle bisector of angle ${\angle BAC}$ at points ${K, L}$ ${(|AK| <|AL|)}$. Point ${M}$ is the reflection of ${L}$ with respect to line ${BC}$. Prove that the circumcircle of the triangle ${BKM}$ passes through the center of the segment ${BC}$ .

2018 Czech-Polish-Slovak Junior Match, 5

An acute triangle $ABC$ is given in which $AB <AC$. Point $E$ lies on the $AC$ side of the triangle, with $AB = AE$. The segment $AD$ is the diameter of the circumcircle of the triangle $ABC$, and point $S$ is the center of this arc $BC$ of this circle to which point $A$ does not belong. Point $F$ is symmetric of point $D$ wrt $S$. Prove that lines $F E$ and $AC$ are perpendicular.

Indonesia MO Shortlist - geometry, g9

Given two circles $\Gamma_1$ and $\Gamma_2$ which intersect at points $A$ and $B$. A line through $A$ intersects $\Gamma_1$ and $\Gamma_2$ at points $C$ and $D$, respectively. Let $M$ be the midpoint of arc $BC$ in $\Gamma_1$ ,which does not contains $A$, and $N$ is the midpoint of the arc $BD$ in $\Gamma_2$, which does not contain $A$. If $K$ is the midpoint of $CD$, prove that $\angle MKN = 90^o.$

2018 OMMock - Mexico National Olympiad Mock Exam, 5

Let $ABC$ be a triangle with circumcirle $\Gamma$, and let $M$ and $N$ be the respective midpoints of the minor arcs $AB$ and $AC$ of $\Gamma$. Let $P$ and $Q$ be points such that $AB=BP$, $AC=CQ$, and $P$, $B$, $C$, $Q$ lie on $BC$ in that order. Prove that $PM$ and $QN$ meet at a point on $\Gamma$. [i]Proposed by Victor Domínguez[/i]

2020 Kazakhstan National Olympiad, 4

The incircle of the triangle $ ABC $ touches the sides of $ AB, BC, CA $ at points $ C_0, A_0, B_0 $, respectively. Let the point $ M $ be the midpoint of the segment connecting the vertex $ C_0 $ with the intersection point of the altitudes of the triangle $ A_0B_0C_0 $, point $ N $ be the midpoint of the arc $ ACB $ of the circumscribed circle of the triangle $ ABC $. Prove that line $ MN $ passes through the center of incircle of triangle $ ABC $.

2003 Olympic Revenge, 1

Let $ABC$ be a triangle with circumcircle $\Gamma$. $D$ is the midpoint of arc $BC$ (this arc does not contain $A$). $E$ is the common point of $BC$ and the perpendicular bisector of $BD$. $F$ is the common point of $AC$ and the parallel to $AB$ containing $D$. $G$ is the common point of $EF$ and $AB$. $H$ is the common point of $GD$ and $AC$. Show that $GAH$ is isosceles.

2018 Dutch IMO TST, 4

In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.

2023 Indonesia TST, 1

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2024 Bangladesh Mathematical Olympiad, P9

Let $ABC$ be a triangle and $M$ be the midpoint of side $BC$. The perpendicular bisector of $BC$ intersects the circumcircle of $\triangle ABC$ at points $K$ and $L$ ($K$ and $A$ lie on the opposite sides of $BC$). A circle passing through $L$ and $M$ intersects $AK$ at points $P$ and $Q$ ($P$ lies on the line segment $AQ$). $LQ$ intersects the circumcircle of $\triangle KMQ$ again at $R$. Prove that $BPCR$ is a cyclic quadrilateral.

2018 Rioplatense Mathematical Olympiad, Level 3, 4

Let $ABC$ be an acute triangle with $AC> AB$. be $\Gamma$ the circumcircle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smallest arc $BC$ of this circle. Let $E$ and $F$ points of the segments $AB$ and $AC$ respectively such that $AE = AF$. Let $P \neq A$ be the second intersection point of the circumcircle circumscribed to $AEF$ with $\Gamma$. Let $G$ and $H$ be the intersections of lines $PE$ and $PF$ with $\Gamma$ other than $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines $AB$ and $AC$ respectively. Show that the $JK$ line passes through the midpoint of $BC$

2023 Switzerland - Final Round, 7

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2019 Saint Petersburg Mathematical Olympiad, 3

Prove that the distance between the midpoint of side $BC$ of triangle $ABC$ and the midpoint of the arc $ABC$ of its circumscribed circle is not less than $AB / 2$

2022 IMO Shortlist, G2

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2023 Indonesia TST, 1

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2014 Iranian Geometry Olympiad (junior), P5

Two points $X, Y$ lie on the arc $BC$ of the circumcircle of $\triangle ABC$ (this arc does not contain $A$) such that $\angle BAX = \angle CAY$ . Let $M$ denotes the midpoint of the chord $AX$ . Show that $BM +CM > AY$ . by Mahan Tajrobekar

2019 Durer Math Competition Finals, 5

Let $ABC$ be an acute triangle and let $X, Y , Z$ denote the midpoints of the shorter arcs $BC, CA, AB$ of its circumcircle, respectively. Let $M$ be an arbitrary point on side $BC$. The line through $M$, parallel to the inner angular bisector of $\angle CBA$ meets the outer angular bisector of $\angle BCA$ at point $N$. The line through $M$, parallel to the inner angular bisector of $\angle BCA$ meets the outer angular bisector of $\angle CBA$ at point $P$. Prove that lines $XM, Y N, ZP$ pass through a single point.

2023 Germany Team Selection Test, 3

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

IV Soros Olympiad 1997 - 98 (Russia), 10.2

Let $M $be the point of intersection of the diagonals of the inscribed quadrilateral $ABCD$. Prove that if $AB = AM,$ then a line passing through $M$ perpendicular to $AD$ passes through the midpoint of the arc $BC$.

Ukraine Correspondence MO - geometry, 2019.11

Let $O$ be the center of the circle circumscribed around the acute triangle $ABC$, and let $N$ be the midpoint of the arc $ABC$ of this circle. On the sides $AB$ and $BC$ mark points $D$ and $E$ respectively, such that the point $O$ lies on the segment $DE$. The lines $DN$ and $BC$ intersect at the point $P$, and the lines $EN$ and $AB$ intersect at the point $Q$. Prove that $PQ \perp AC$.

1998 Portugal MO, 5

Let $F$ be the midpoint of circle arc $AB$, and let $M$ be a point on the arc such that $AM <MB$. The perpendicular drawn from point $F$ on $AM$ intersects $AM$ at point $T$. Show that $T$ bisects the broken line $AMB$, that is $AT =TM+MB$. KöMaL Gy. 2404. (March 1987), Archimedes of Syracuse

2018 Dutch IMO TST, 4

In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.

2018 Sharygin Geometry Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral, $BL$ and $CN$ be the internal angle bisectors in triangles $ABD$ and $ACD$ respectively. The circumcircles of triangles $ABL$ and $CDN$ meet at points $P$ and $Q$. Prove that the line $PQ$ passes through the midpoint of the arc $AD$ not containing $B$.

2019 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ a triangle, $I$ the incenter, $D$ the contact point of the incircle with the side $BC$ and $E$ the foot of the bisector of the angle $A$. If $M$ is the midpoint of the arc $BC$ which contains the point $A$ of the circumcircle of the triangle $ABC$ and $\{F\} = DI \cap AM$, prove that $MI$ passes through the midpoint of $[EF]$.