This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 68

2019 Korea National Olympiad, 6

In acute triangle $ABC$, $AB>AC$. Let $I$ the incenter, $\Omega$ the circumcircle of triangle $ABC$, and $D$ the foot of perpendicular from $A$ to $BC$. $AI$ intersects $\Omega$ at point $M(\neq A)$, and the line which passes $M$ and perpendicular to $AM$ intersects $AD$ at point $E$. Now let $F$ the foot of perpendicular from $I$ to $AD$. Prove that $ID\cdot AM=IE\cdot AF$.

2023 Estonia Team Selection Test, 3

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

1991 Greece National Olympiad, 2

Let $O$ be the circumcenter of triangle $ABC$ and let $A_1,B_1,C_1$ be the midpoints of arcs $BC, CA,AB$ respectively. If $I$ is the incenter of triangle $ABC$, prove that $$\overrightarrow{OI}= \overrightarrow{OA_1}+ \overrightarrow{OB_1}+ \overrightarrow{OC_1}.$$

1998 Rioplatense Mathematical Olympiad, Level 3, 1

Consider an arc $AB$ of a circle $C$ and a point $P$ variable in that arc $AB$. Let $D$ be the midpoint of the arc $AP$ that doeas not contain $B$ and let $E$ be the midpoint of the arc $BP$ that does not contain $A$. Let $C_1$ be the circle with center $D$ passing through $A$ and $C_2$ be the circle with center $E$ passing through $B.$ Prove that the line that contains the intersection points of $C_1$ and $C_2$ passes through a fixed point.

2025 India STEMS Category A, 5

Let $ABC$ be an acute scalene triangle. Let $D, E$ be points on segments $AB, AC$ respectively, such that $BD=CE$. Prove that the nine-point centers of $ADE$, $ACD$, $ABC$, $AEB$ form a rhombus. [i]Proposed by Malay Mahajan and Siddharth Choppara[/i]

1964 Poland - Second Round, 2

The circle is divided into four non-overlapping gaps $ AB $, $ BC $, $ CD $ and $ DA $. Prove that the segment joining the midpoints of the arcs $AB$ and $CD$ is perpendicular to the segment joining the midpoints of the arcs $BC$ and $DA$.

2023 Portugal MO, 2

Let $[AB]$ be a diameter of a circle with center $O$ and radius $1$. Consider $P$ a point on the circumference, different from $A$ and $B$ and let $Q$ be the midpoint of the arc $AP$. The line parallel to $PQ$ that passes through $O$ intersects the line $PB$ at point $S$. Determine $\overline{PS}$.

Croatia MO (HMO) - geometry, 2017.3

In triangle $ABC$, $|AB| <|BC|$ holds. Point $I$ is the center of the circle inscribed in that triangle. Let $M$ be the midpoint of the side $AC$, and $N$ be the midpoint of the arc $AC$ of the circumcircle of that triangle containing point $B$. Prove that $\angle IMA = \angle INB$.

2018 Oral Moscow Geometry Olympiad, 4

Given a triangle $ABC$ ($AB> AC$) and a circle circumscribed around it. Construct with a compass and a ruler the midpoint of the arc $BC$ (not containing vertex $A$), with no more than two lines (straight or circles).

2017 Czech And Slovak Olympiad III A, 5

Given is the acute triangle $ABC$ with the intersection of altitudes $H$. The angle bisector of angle $BHC$ intersects side $BC$ at point $D$. Mark $E$ and $F$ the symmetrics of the point $D$ wrt lines $AB$ and $AC$. Prove that the circle circumscribed around the triangle $AEF$ passes through the midpoint of the arc $BAC$

2021 OMpD, 2

Let $ABC$ be a triangle, $\Gamma$ its circumcircle and $D$ the midpoint of the arc $AC$ of $\Gamma$ that does not contain $B$. If $O$ is the center of $\Gamma$ and I is the incenter of $ABC$, prove that $OI$ is perpendicular to $BD$ if and only if $AB + BC = 2AC$.

2019 Peru EGMO TST, 2

Let $\Gamma$ be the circle of an acute triangle $ABC$ and let $H$ be its orthocenter. The circle $\omega$ with diameter $AH$ cuts $\Gamma$ at point $D$ ($D\ne A$). Let $M$ be the midpoint of the smaller arc $BC$ of $\Gamma$ . Let $N$ be the midpoint of the largest arc $BC$ of the circumcircle of the triangle $BHC$. Prove that there is a circle that passes through the points $D, H, M$ and $N$.

VMEO III 2006, 10.1

Let $ABC$ be a triangle inscribed in a circle with center $O$. Let $A_1$ be a point on arc $BC$ that does not contain $ A$ such that the line perpendicular to $OA$ at $A_1$ intersects the lines $AB$ and $AC$ at two points and the line segment joining those two points has as midpoint $A_1$. Points $B_1$, $C_1$ are determined similarly. Prove that the lines $AA_1$, $BB_1$, $CC_1$ are concurrent.

2018 JBMO TST-Turkey, 3

Let $H$ be the orthocenter of an acute angled triangle $ABC$. Circumcircle of the triangle $ABC$ and the circle of diameter $[AH]$ intersect at point $E$, different from $A$. Let $M$ be the midpoint of the small arc $BC$ of the circumcircle of the triangle $ABC$ and let $N$ the midpoint of the large arc $BC$ of the circumcircle of the triangle $BHC$ Prove that points $E, H, M, N$ are concyclic.

2023 Romania Team Selection Test, P3

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2024 Canadian Mathematical Olympiad Qualification, 3

Let $\vartriangle ABC$ be an acute triangle with $AB < AC$. Let $H$ be its orthocentre and $M$ be the midpoint of arc $BAC$ on the circumcircle. It is given that $B$, $H$, $M$ are collinear, the length of the altitude from $M$ to $AB$ is $1$, and the length of the altitude from $M$ to $BC$ is $6$. Determine all possible areas for $\vartriangle ABC$ .

Swiss NMO - geometry, 2020.2

Let $ABC$ be an acute triangle. Let $M_A, M_B$ and $M_C$ be the midpoints of sides $BC,CA$, respectively $AB$. Let $M'_A , M'_B$ and $M'_C$ be the the midpoints of the arcs $BC, CA$ and $AB$ respectively of the circumscriberd circle of triangle $ABC$. Let $P_A$ be the intersection of the straight line $M_BM_C$ and the perpendicular to $M'_BM'_C$ through $A$. Define $P_B$ and $P_C$ similarly. Show that the straight line $M_AP_A, M_BP_B$ and $M_CP_C$ intersect at one point.

2006 Sharygin Geometry Olympiad, 8.4

Two equal circles intersect at points $A$ and $B$. $P$ is the point of one of the circles that is different from $A$ and $B, X$ and $Y$ are the second intersection points of the lines of $PA, PB$ with the other circle. Prove that the line passing through $P$ and perpendicular to $AB$ divides one of the arcs $XY$ in half.