Found problems: 698
2021 Denmark MO - Mohr Contest, 4
Given triangle $ABC$ with $|AC| > |BC|$. The point $M$ lies on the angle bisector of angle $C$, and $BM$ is perpendicular to the angle bisector. Prove that the area of triangle AMC is half of the area of triangle $ABC$.
[img]https://cdn.artofproblemsolving.com/attachments/4/2/1b541b76ec4a9c052b8866acbfea9a0ce04b56.png[/img]
Denmark (Mohr) - geometry, 2006.1
The star shown is symmetric with respect to each of the six diagonals shown. All segments connecting the points $A_1, A_2, . . . , A_6$ with the centre of the star have the length $1$, and all the angles at $B_1, B_2, . . . , B_6$ indicated in the figure are right angles. Calculate the area of the star.
[img]https://1.bp.blogspot.com/-Rso2aWGUq_k/XzcAm4BkAvI/AAAAAAAAMW0/277afcqTfCgZOHshf_6ce2XpinWWR4SZACLcBGAsYHQ/s0/2006%2BMohr%2Bp1.png[/img]
2019 Azerbaijan Junior NMO, 2
Alice creates the graphs $y=|x-a|$ and $y=c-|x-b|$ , where $a,b,c\in\mathbb{R^+}$. She observes that these two graphs and $x$ axis divides the positive side of the plane ($x,y>0$) into two triangles and a quadrilateral. Find the ratio of sums of two triangles' areas to the area of quadrilateral.
[hide=There might be a translation error] In the original statement,it says $XOY$ plane,instead of positive side of the plane. I think these 2 are the same,but I might be wrong [/hide]
2020 BMT Fall, 16
The triangle with side lengths $3, 5$, and $k$ has area $6$ for two distinct values of $k$: $x$ and $y$. Compute $|x^2 -y^2|$.
2016 Peru Cono Sur TST, P2
Let $\omega$ be a circle. For each $n$, let $A_n$ be the area of a regular $n$-sided polygon circumscribed to $\omega$ and $B_n$ the area of a regular $n$-sided polygon inscribed in $\omega$ . Try that $3A_{2015} + B_{2015}> 4A_{4030}$
1983 Austrian-Polish Competition, 3
A bounded planar region of area $S$ is covered by a finite family $F$ of closed discs. Prove that $F$ contains a subfamily consisting of pairwise disjoint discs, of joint area not less than $S/9$.
1985 Austrian-Polish Competition, 3
In a convex quadrilateral of area $1$, the sum of the lengths of all sides and diagonals is not less than $4+\sqrt 8$. Prove this.
1969 IMO Shortlist, 46
$(NET 1)$ The vertices of an $(n + 1)-$gon are placed on the edges of a regular $n-$gon so that the perimeter of the $n-$gon is divided into equal parts. How does one choose these $n + 1$ points in order to obtain the $(n + 1)-$gon with
$(a)$ maximal area;
$(b)$ minimal area?
Durer Math Competition CD 1st Round - geometry, 2012.D2
Durer drew a regular triangle and then poked at an interior point. He made perpendiculars from it sides and connected it to the vertices. In this way, $6$ small triangles were created, of which (moving clockwise) all the second one is painted gray, as shown in figure. Show that the sum of the gray areas is just half the area of the triangle.
[img]https://cdn.artofproblemsolving.com/attachments/e/7/a84ad28b3cd45bd0ce455cee2446222fd3eac2.png[/img]
2002 Junior Balkan Team Selection Tests - Romania, 4
Five points are given in the plane that each of $10$ triangles they define has area greater than $2$. Prove that there exists a triangle of area greater than $3$.
VI Soros Olympiad 1999 - 2000 (Russia), 10.5
It is known that there is a straight line dividing the perimeter and area of a certain polygon circumscribed around a circle in the same ratio. Prove that this line passes through the center of the indicated circle.
2016 Flanders Math Olympiad, 3
Three line segments divide a triangle into five triangles. The area of these triangles is called $u, v, x,$ yand $z$, as in the figure.
(a) Prove that $uv = yz$.
(b) Prove that the area of the great triangle is at most $ \frac{xz}{y}$
[img]https://cdn.artofproblemsolving.com/attachments/9/4/2041d62d014cf742876e01dd8c604c4d38a167.png[/img]
2011 Oral Moscow Geometry Olympiad, 4
Prove that any rigid flat triangle $T$ of area less than $4$ can be inserted through a triangular hole $Q$ with area $3$.
1989 IMO Shortlist, 1
$ ABC$ is a triangle, the bisector of angle $ A$ meets the circumcircle of triangle $ ABC$ in $ A_1$, points $ B_1$ and $ C_1$ are defined similarly. Let $ AA_1$ meet the lines that bisect the two external angles at $ B$ and $ C$ in $ A_0$. Define $ B_0$ and $ C_0$ similarly. Prove that the area of triangle $ A_0B_0C_0 \equal{} 2 \cdot$ area of hexagon $ AC_1BA_1CB_1 \geq 4 \cdot$ area of triangle $ ABC$.
1976 Chisinau City MO, 133
A triangle with a parallelogram inside was placed in a square. Prove that the area of a parallelogram is not more than a quarter of a square.
2007 Singapore Junior Math Olympiad, 1
Let $ABCD$ be a trapezium with $AB// DC, AB = b, AD = a ,a<b$ and $O$ the intersection point of the diagonals. Let $S$ be the area of the trapezium $ABCD$. Suppose the area of $\vartriangle DOC$ is $2S/9$. Find the value of $a/b$.
Novosibirsk Oral Geo Oly VIII, 2022.5
Two isosceles triangles of the same area are located as shown in the figure. Find the angle $x$.
[img]https://cdn.artofproblemsolving.com/attachments/a/6/f7dbfd267274781b67a5f3d5a9036fb2905156.png[/img]
2000 Argentina National Olympiad, 6
You have an equilateral paper triangle of area $9$ and fold it in two, following a straight line that passes through the center of the triangle and does not contain any vertex of the triangle. Thus there remains a quadrilateral in which the two pieces overlap, and three triangles without overlaps. Determine the smallest possible value of the quadrilateral area of the overlay.
1953 Moscow Mathematical Olympiad, 242
Let $A$ be a vertex of a regular star-shaped pentagon, the angle at $A$ being less than $180^o$ and the broken line $AA_1BB_1CC_1DD_1EE_1$ being its contour. Lines $AB$ and $DE$ meet at $F$. Prove that polygon $ABB_1CC_1DED_1$ has the same area as the quadrilateral $AD_1EF$.
Note: A regular star pentagon is a figure formed along the diagonals of a regular pentagon.
2004 May Olympiad, 4
In a square $ABCD$ of diagonals $AC$ and $BD$, we call $O$ at the center of the square. A square $PQRS$ is constructed with sides parallel to those of $ABCD$ with $P$ in segment $AO, Q$ in segment $BO, R$ in segment $CO, S$ in segment $DO$. If area of $ABCD$ equals two times the area of $PQRS$, and $M$ is the midpoint of the $AB$ side, calculate the measure of the angle $\angle AMP$.
2022 AMC 10, 10
Daniel finds a rectangular index card and measures its diagonal to be 8 centimeters. Daniel then cuts out equal squares of side 1 cm at two opposite corners of the index card and measures the distance between the two closest vertices of these squares to be $4\sqrt{2}$ centimeters, as shown below. What is the area of the original index card?
[asy]
unitsize(0.6 cm);
pair A, B, C, D, E, F, G, H;
real x, y;
x = 9;
y = 5;
A = (0,y);
B = (x - 1,y);
C = (x - 1,y - 1);
D = (x,y - 1);
E = (x,0);
F = (1,0);
G = (1,1);
H = (0,1);
draw(A--B--C--D--E--F--G--H--cycle);
draw(interp(C,G,0.03)--interp(C,G,0.97), dashed, Arrows(6));
draw(interp(A,E,0.03)--interp(A,E,0.97), dashed, Arrows(6));
label("$1$", (B + C)/2, W);
label("$1$", (C + D)/2, S);
label("$8$", interp(A,E,0.3), NE);
label("$4 \sqrt{2}$", interp(G,C,0.2), SE);
[/asy]
$\textbf{(A) }14\qquad\textbf{(B) }10\sqrt{2}\qquad\textbf{(C) }16\qquad\textbf{(D) }12\sqrt{2}\qquad\textbf{(E) }18$
1957 Moscow Mathematical Olympiad, 352
Of all parallelograms of a given area find the one with the shortest possible longer diagonal.
2006 IMO, 6
Assign to each side $b$ of a convex polygon $P$ the maximum area of a triangle that has $b$ as a side and is contained in $P$. Show that the sum of the areas assigned to the sides of $P$ is at least twice the area of $P$.
1999 Poland - Second Round, 3
Let $ABCD$ be a cyclic quadrilateral and let $E$ and $F$ be the points on the sides $AB$ and $CD$ respectively such that $AE : EB = CF : FD$. Point $P$ on the segment EF satsfies $EP : PF = AB : CD$. Prove that the ratio of the areas of $\vartriangle APD$ and $\vartriangle BPC$ does not depend on the choice of $E$ and $F$.
2015 Bangladesh Mathematical Olympiad, 7
In triangle $\triangle ABC$, the points $A', B', C'$ are on sides $BC, AC, AB$ respectively. Also, $AA', BB', CC'$ intersect at the point $O$(they are concurrent at $O$). Also, $\frac {AO}{OA'}+\frac {BO}{OB'}+\frac {CO}{OC'} = 92$. Find the value of $\frac {AO}{OA'}\times \frac {BO}{OB'}\times \frac {CO}{OC'}$.