This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 63

2013 Junior Balkan Team Selection Tests - Romania, 4

Let $H$ be the orthocenter of an acute-angled triangle $ABC$ and $P$ a point on the circumcenter of triangle $ABC$. Prove that the Simson line of $P$ bisects the segment $[P H]$.

Kharkiv City MO Seniors - geometry, 2021.11.4

In the triangle $ABC$, the segment $CL$ is the angle bisector. The $C$-exscribed circle with center at the point $ I_c$ touches the side of the $AB$ at the point $D$ and the extension of sides $CA$ and $CB$ at points $P$ and $Q$, respectively. It turned out that the length of the segment $CD$ is equal to the radius of this exscribed circle. Prove that the line $PQ$ bisects the segment $I_CL$.

2021 Saudi Arabia Training Tests, 3

Let $ABC$ be an acute, non-isosceles triangle inscribed in (O) and $BB'$, $CC'$ are altitudes. Denote $E, F$ as the intersections of $BB'$, $CC'$ with $(O)$ and $D, P, Q$ are projections of $A$ on $BC$, $CE$, $BF$. Prove that the perpendicular bisectors of $PQ$ bisects two segments $AO$, $BC$.

Kyiv City MO Seniors 2003+ geometry, 2013.10.4

The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $. (Igor Nagel)

2011 Dutch IMO TST, 5

Let $ABC$ be a triangle with $|AB|> |BC|$. Let $D$ be the midpoint of $AC$. Let $E$ be the intersection of the angular bisector of $\angle ABC$ and the line $AC$. Let $F$ be the point on $BE$ such that $CF$ is perpendicular to $BE$. Finally, let $G$ be the intersection of $CF$ and $BD$. Prove that $DF$ divides the line segment $EG$ into two equal parts.

Croatia MO (HMO) - geometry, 2013.3

Given a pointed triangle $ABC$ with orthocenter $H$. Let $D$ be the point such that the quadrilateral $AHCD$ is parallelogram. Let $p$ be the perpendicular to the direction $AB$ through the midpoint $A_1$ of the side $BC$. Denote the intersection of the lines $p$ and $AB$ with $E$, and the midpoint of the length $A_1E$ with $F$. The point where the parallel to the line $BD$ through point $A$ intersects $p$ denote by $G$. Prove that the quadrilateral $AFA_1C$ is cyclic if and only if the lines $BF$ passes through the midpoint of the length $CG$.

Ukrainian From Tasks to Tasks - geometry, 2014.9

On a circle with diameter $AB$ we marked an arbitrary point $C$, which does not coincide with $A$ and $B$. The tangent to the circle at point $A$ intersects the line $BC$ at point $D$. Prove that the tangent to the circle at point $C$ bisects the segment $AD$.

2011 Tournament of Towns, 3

In triangle $ABC$, points $A_1,B_1,C_1$ are bases of altitudes from vertices $A,B,C$, and points $C_A,C_B$ are the projections of $C_1$ to $AC$ and $BC$ respectively. Prove that line $C_AC_B$ bisects the segments $C_1A_1$ and $C_1B_1$.

Swiss NMO - geometry, 2014.10

Let $k$ be a circle with diameter $AB$. Let $C$ be a point on the straight line $AB$, so that $B$ between $A$ and $C$ lies. Let $T$ be a point on $k$ such that $CT$ is a tangent to $k$. Let $l$ be the parallel to $CT$ through $A$ and $D$ the intersection of $l$ and the perpendicular to $AB$ through $T$. Show that the line $DB$ bisects segment $CT$.

2015 Thailand TSTST, 1

Let $O$ be the circumcenter of an acute $\vartriangle ABC$ which has altitude $AD$. Let $AO$ intersect the circumcircle of $\vartriangle BOC$ again at $X$. If $E$ and $F$ are points on lines $AB$ and $AC$ such that $\angle XEA = \angle XFA = 90^o$ , then prove that the line $DX$ bisects the segment $EF$.

Croatia MO (HMO) - geometry, 2019.7

On the side $AB$ of the cyclic quadrilateral $ABCD$ there is a point $X$ such that diagonal $AC$ bisects the segment $DX$, and the diagonal $BD$ bisects the segment $CX$. What is the smallest possible ratio $|AB | : |CD|$ in such a quadrilateral ?

Kyiv City MO Juniors Round2 2010+ geometry, 2014.89.3

Given a triangle $ABC$, on the side $BC$ which marked the point $E$ such that $BE \ge CE$. Construct on the sides $AB$ and $AC$ the points $D$ and $F$, respectively, such that $\angle DEF = 90 {} ^ \circ$ and the segment $BF$ is bisected by the segment $DE $. (Black Maxim)

2021 Yasinsky Geometry Olympiad, 5

Circle $\omega$ is inscribed in the $\vartriangle ABC$, with center $I$. Using only a ruler, divide segment $AI$ in half. (Grigory Filippovsky)