This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2007 Today's Calculation Of Integral, 255

Find the value of $ a$ for which the area of the figure surrounded by $ y \equal{} e^{ \minus{} x}$ and $ y \equal{} ax \plus{} 3\ (a < 0)$ is minimized.

2010 Laurențiu Panaitopol, Tulcea, 3

Let be a twice-differentiable function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that has the properties that: $ \text{(i) supp} f''=f\left(\mathbb{R}\right) $ $ \text{(ii)}\exists g:\mathbb{R}\longrightarrow\mathbb{R}\quad\forall x\in\mathbb{R}\quad f(x+1)=f(x)+f'\left( g(x)\right)\text{ and } f'(x+1)=f'(x)+f''\left( g(x)\right) $ Prove that: [b]a)[/b] any such $ g $ is injective. [b]b)[/b] $ f $ is of class $ C^{\infty } , $ and for any natural number $ n, $ any real number $ x $ and any such $ g, $ $$f^{(n)}(x+1)=f^{(n)}(x)+f^{(n+1)}\left( g(x)\right) . $$ [i]Laurențiu Panaitopol[/i]

Today's calculation of integrals, 873

Let $a,\ b$ be positive real numbers. Consider the circle $C_1: (x-a)^2+y^2=a^2$ and the ellipse $C_2: x^2+\frac{y^2}{b^2}=1.$ (1) Find the condition for which $C_1$ is inscribed in $C_2$. (2) Suppose $b=\frac{1}{\sqrt{3}}$ and $C_1$ is inscribed in $C_2$. Find the coordinate $(p,\ q)$ of the point of tangency in the first quadrant for $C_1$ and $C_2$. (3) Under the condition in (1), find the area of the part enclosed by $C_1,\ C_2$ for $x\geq p$. 60 point

ICMC 5, 2

Evaluate \[\frac{1/2}{1+\sqrt2}+\frac{1/4}{1+\sqrt[4]2}+\frac{1/8}{1+\sqrt[8]2}+\frac{1/16}{1+\sqrt[16]2}+\cdots\] [i]Proposed by Ethan Tan[/i]

2009 Today's Calculation Of Integral, 434

Evaluate $ \int_0^1 \frac{x\minus{}e^{2x}}{x^2\minus{}e^{2x}}dx$.

2003 Vietnam Team Selection Test, 1

Let be four positive integers $m, n, p, q$, with $p < m$ given and $q < n$. Take four points $A(0; 0), B(p; 0), C (m; q)$ and $D(m; n)$ in the coordinate plane. Consider the paths $f$ from $A$ to $D$ and the paths $g$ from $B$ to $C$ such that when going along $f$ or $g$, one goes only in the positive directions of coordinates and one can only change directions (from the positive direction of one axe coordinate into the the positive direction of the other axe coordinate) at the points with integral coordinates. Let $S$ be the number of couples $(f, g)$ such that $f$ and $g$ have no common points. Prove that \[S = \binom{n}{m+n} \cdot \binom{q}{m+q-p} - \binom{q}{m+q} \cdot \binom{n}{m+n-p}.\]

PEN Q Problems, 7

Let $f(x)=x^{n}+5x^{n-1}+3$, where $n>1$ is an integer. Prove that $f(x)$ cannot be expressed as the product of two nonconstant polynomials with integer coefficients.

1989 IMO Longlists, 4

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. He knows that the sides of the carpet are integral numbers of feet and that his two storerooms have the same (unknown) length, but widths of 38 feet and 50 feet respectively. What are the carpet dimensions?

1985 IMO Longlists, 63

Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that \[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]

Today's calculation of integrals, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

2017 BMT Spring, 8

The numerical value of the following integral $$\int^1_0 (-x^2 + x)^{2017} \lfloor 2017x \rfloor dx$$ can be expressed in the form $a\frac{m!^2}{ n!}$ where a is minimized. Find $a + m + n$. (Note $\lfloor x\rfloor$ is the largest integer less than or equal to x.)

2011 Moldova Team Selection Test, 1

Find all real numbers $x, y$ such that: $y+3\sqrt{x+2}=\frac{23}2+y^2-\sqrt{49-16x}$

2007 Today's Calculation Of Integral, 179

Evaluate the following integrals. (1) Meiji University $\int_{\frac{1}{e}}^{e}\frac{(\log x)^{2}}{x}dx.$ (2) Tokyo University of Science $\int_{0}^{1}\frac{7x^{3}+23x^{2}+21x+15}{(x^{2}+1)(x+1)^{2}}dx.$

2017 Azerbaijan EGMO TST, 4

Find all natural numbers a, b such that $ a^{n}\plus{} b^{n} \equal{} c^{n\plus{}1}$ where c and n are naturals.

2009 Today's Calculation Of Integral, 446

Evaluate $ \int_0^1 \frac{(1\minus{}2x)e^{x}\plus{}(1\plus{}2x)e^{\minus{}x}}{(e^x\plus{}e^{\minus{}x})^3}\ dx.$

2003 Mediterranean Mathematics Olympiad, 2

In a triangle $ABC$ with $BC = CA + \frac 12 AB$, point $P$ is given on side $AB$ such that $BP : PA = 1 : 3$. Prove that $\angle CAP = 2 \angle CPA.$

1999 Harvard-MIT Mathematics Tournament, 3

Find \[\int_{-4\pi\sqrt{2}}^{4\pi\sqrt{2}}\left(\dfrac{\sin x}{1+x^4}+1\right)dx.\]

2016 NIMO Problems, 8

For a complex number $z \neq 3$,$4$, let $F(z)$ denote the real part of $\tfrac{1}{(3-z)(4-z)}$. If \[ \int_0^1 F \left( \frac{\cos 2 \pi t + i \sin 2 \pi t}{5} \right) \; dt = \frac mn \] for relatively prime positive integers $m$ and $n$, find $100m+n$. [i]Proposed by Evan Chen[/i]

2015 AMC 10, 24

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible? $\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

1982 AMC 12/AHSME, 29

Let $ x$,$ y$, and $ z$ be three positive real numbers whose sum is $ 1$. If no one of these numbers is more than twice any other, then the minimum possible value of the product $ xyz$ is $ \textbf{(A)}\ \frac{1}{32}\qquad \textbf{(B)}\ \frac{1}{36}\qquad \textbf{(C)}\ \frac{4}{125}\qquad \textbf{(D)}\ \frac{1}{127}\qquad \textbf{(E)}\ \text{none of these}$

2021 Nigerian Senior MO Round 3, 5

Let $f(x)=\frac{P(x)}{Q(x)}$. Where $P(x), Q(x)$ are two non constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f(\frac{1}{x})=f(x)+f(\frac{1}{x})$ for all infinitely many values of $x$. a. Show that $deg(P) <deg(Q).$ b. Show that $P'(1)=2Q'(1)- deg(Q). Q(1)$ Here $P'(x)$ denotes the derivatives of $P(x)$ as usual

2009 Today's Calculation Of Integral, 426

Consider the polynomial $ f(x) \equal{} ax^2 \plus{} bx \plus{} c$, with degree less than or equal to 2. When $ f$ varies with subject to the constrain $ f(0) \equal{} 0,\ f(2) \equal{} 2$, find the minimum value of $ S\equal{}\int_0^2 |f'(x)|\ dx$.

1991 Federal Competition For Advanced Students, P2, 6

Find the number of ten-digit natural numbers (which do not start with zero) containing no block $ 1991$.

2006 All-Russian Olympiad, 1

Prove that $\sin\sqrt{x}<\sqrt{\sin x}$ for every real $x$ such that $0<x<\frac{\pi}{2}$.

2001 India Regional Mathematical Olympiad, 3

Find the number of positive integers $x$ such that \[ \left[ \frac{x}{99} \right] = \left[ \frac{x}{101} \right] . \]