Found problems: 2215
1994 IMO Shortlist, 3
Peter has three accounts in a bank, each with an integral number of dollars. He is only allowed to transfer money from one account to another so that the amount of money in the latter is doubled. Prove that Peter can always transfer all his money into two accounts. Can Peter always transfer all his money into one account?
2022 CMIMC Integration Bee, 10
\[\int_0^1 \frac{(x+1)\log(x)}{x^3-1}\,\mathrm dx\]
[i]Proposed by Vlad Oleksenko[/i]
2009 AIME Problems, 8
Let $ S \equal{} \{2^0,2^1,2^2,\ldots,2^{10}\}$. Consider all possible positive differences of pairs of elements of $ S$. Let $ N$ be the sum of all of these differences. Find the remainder when $ N$ is divided by $ 1000$.
2000 Finnish National High School Mathematics Competition, 2
Prove that the integral part of the decimal representation of the number $(3+\sqrt{5})^n$ is odd, for every positive integer $n.$
2005 Today's Calculation Of Integral, 82
Let $0<a<b$.Prove the following inequaliy.
\[\frac{1}{b-a}\int_a^b \left(\ln \frac{b}{x}\right)^2 dx<2\]
2004 Germany Team Selection Test, 1
Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$.
(1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$?
Justify your answer.
2021 Science ON all problems, 1
Find all differentiable functions $f, g:[0,\infty) \to \mathbb{R}$ and the real constant $k\geq 0$ such that
\begin{align*} f(x) &=k+ \int_0^x \frac{g(t)}{f(t)}dt \\
g(x) &= -k-\int_0^x f(t)g(t) dt \end{align*}
and $f(0)=k, f'(0)=-k^2/3$ and also $f(x)\neq 0$ for all $x\geq 0$.\\ \\
[i] (Nora Gavrea)[/i]
2010 Today's Calculation Of Integral, 607
On the coordinate plane, Let $C$ be the graph of $y=(\ln x)^2\ (x>0)$ and for $\alpha >0$, denote $L(\alpha)$ be the tangent line of $C$ at the point $(\alpha ,\ (\ln \alpha)^2).$
(1) Draw the graph.
(2) Let $n(\alpha)$ be the number of the intersection points of $C$ and $L(\alpha)$. Find $n(\alpha)$.
(3) For $0<\alpha <1$, let $S(\alpha)$ be the area of the region bounded by $C,\ L(\alpha)$ and the $x$-axis. Find $S(\alpha)$.
2010 Tokyo Institute of Technology entrance exam, Second Exam.
2016 NIMO Problems, 8
For a complex number $z \neq 3$,$4$, let $F(z)$ denote the real part of $\tfrac{1}{(3-z)(4-z)}$. If \[
\int_0^1 F \left( \frac{\cos 2 \pi t + i \sin 2 \pi t}{5} \right) \; dt = \frac mn
\] for relatively prime positive integers $m$ and $n$, find $100m+n$.
[i]Proposed by Evan Chen[/i]
1958 February Putnam, B4
Title is self explanatory. Pick two points on the unit sphere. What is the expected distance between them?
2020 Jozsef Wildt International Math Competition, W30
Let $p>1,\frac1p+\frac1q=1$ and $r>1$. If $u(x,y),v(x,y)>0$, and $f(x,y),g(x,y)$ are continuous functions on $[a,b]\times[c,d]$, then prove
$$\left(\frac{\left(\int^b_a\int^d_c(f(x,y)+g(x,y))^rdxdy\right)^{1/r}}{(u(x,y)+v(x,y))^{1/q}}\right)^p\le\left(\frac{\left(\int^b_a\int^d_cf(x,y)^rdxdy\right)^{1/r}}{u(x,y)^{1/q}}\right)^p+\left(\frac{\left(\int^b_a\int^d_cg(x,y)^rdxdy\right)^{1/r}}{v(x,y)^{1/q}}\right)^p,$$
with equality if and only if either
$$\left(\lVert f(x,y)\rVert^r_r,\lVert g(x,y)\rVert^r_r\right)=\alpha\left(\lVert u(x,y)\rVert^r_r,\lVert v(x,y)\rVert^r_r\right)$$
for some $\alpha>0$ or $\lVert f(x,y)\rVert^r_r=\lVert g(x,y)\rVert^r_r=0$.
[i]Proposed by Chang-Jian Zhao[/i]
2013 Today's Calculation Of Integral, 881
Evaluate $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx$.
2010 Today's Calculation Of Integral, 652
Let $a,\ b,\ c$ be positive real numbers such that $b^2>ac.$
Evaluate
\[\int_0^{\infty} \frac{dx}{ax^4+2bx^2+c}.\]
[i]1981 Tokyo University, Master Course[/i]
2015 Brazil Team Selection Test, 3
Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\]
[i]Proposed by Denmark[/i]
2009 Romania National Olympiad, 4
Let $f,g,h:\mathbb{R}\rightarrow \mathbb{R}$ such that $f$ is differentiable, $g$ and $h$ are monotonic, and $f'=f+g+h$. Prove that the set of the points of discontinuity of $g$ coincides with the respective set of $h$.
1999 India National Olympiad, 3
Show that there do not exist polynomials $p(x)$ and $q(x)$ each having integer coefficients and of degree greater than or equal to 1 such that \[ p(x)q(x) = x^5 +2x +1 . \]
1991 Putnam, A1
The rectangle with vertices $(0,0)$, $(0,3)$, $(2,0)$ and $(2,3)$ is rotated clockwise through a right angle about the point $(2,0)$, then about $(5,0)$, then about $(7,0$), and finally about $(10,0)$. The net effect is to translate it a distance $10$ along the $x$-axis. The point initially at $(1,1)$ traces out a curve. Find the area under this curve (in other words, the area of the region bounded by the curve, the $x$-axis and the lines parallel to the $y$-axis through $(1,0)$ and $(11,0)$).
2012 Tuymaada Olympiad, 4
Let $p=4k+3$ be a prime. Prove that if
\[\dfrac {1} {0^2+1}+\dfrac{1}{1^2+1}+\cdots+\dfrac{1}{(p-1)^2+1}=\dfrac{m} {n}\]
(where the fraction $\dfrac {m} {n}$ is in reduced terms), then $p \mid 2m-n$.
[i]Proposed by A. Golovanov[/i]
2012 Today's Calculation Of Integral, 773
For $x\geq 0$ find the value of $x$ by which $f(x)=\int_0^x 3^t(3^t-4)(x-t)dt$ is minimized.
2005 MOP Homework, 5
Show that for nonnegative integers $m$ and $n$,
$\frac{\dbinom{m}{0}}{n+1}-\frac{\dbinom{m}{1}}{n+2}+...+(-1)^m\frac{\dbinom{m}{m}}{n+m+1}$
$=\frac{\dbinom{n}{0}}{m+1}-\frac{\dbinom{n}{1}}{m+2}+...+(-1)^n\frac{\dbinom{n}{n}}{m+n+1}$.
2009 Today's Calculation Of Integral, 493
In the $ x \minus{} y$ plane, let $ l$ be the tangent line at the point $ A\left(\frac {a}{2},\ \frac {\sqrt {3}}{2}b\right)$ on the ellipse $ \frac {x^2}{a^2} \plus{} \frac {y^2}{b^2}\equal{}1\ (0 < b < 1 < a)$. Let denote $ S$ be the area of the figure bounded by $ l,$ the $ x$ axis and the ellipse.
(1) Find the equation of $ l$.
(2) Express $ S$ in terms of $ a,\ b$.
(3) Find the maximum value of $ S$ with the constraint $ a^2 \plus{} 3b^2 \equal{} 4$.
1989 IMO Longlists, 84
Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which
\[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\]
where $ x_0, x_1, \ldots , x_n$ are real variables.
Today's calculation of integrals, 891
Given a triangle $OAB$ with the vetices $O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0)$ in the $xyz$ space.
Let $V$ be the cone obtained by rotating the triangle around the $x$-axis.
Find the volume of the solid obtained by rotating the cone $V$ around the $y$-axis.
2007 Today's Calculation Of Integral, 249
Determine the sign of $ \int_{\frac{1}{2}}^2 \frac{\ln t}{1\plus{}t^n}\ dt\ (n\equal{}1, 2, \cdots)$.
2012 Today's Calculation Of Integral, 770
Find the value of $a$ such that :
\[101a=6539\int_{-1}^1 \frac{x^{12}+31}{1+2011^{x}}\ dx.\]