This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2013 Today's Calculation Of Integral, 863

For $0<t\leq 1$, let $F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.$ (1) Find $\lim_{t\rightarrow 0} F(t).$ (2) Find the range of $t$ such that $F(t)\geq 1.$

2009 Today's Calculation Of Integral, 480

Let $ a,\ b$ be positive real numbers. Prove that $ \int_{a \minus{} 2b}^{2a \minus{} b} \left|\sqrt {3b(2a \minus{} b) \plus{} 2(a \minus{} 2b)x \minus{} x^2} \minus{} \sqrt {3a(2b \minus{} a) \plus{} 2(2a \minus{} b)x \minus{} x^2}\right|dx$ $ \leq \frac {\pi}3 (a^2 \plus{} b^2).$ [color=green]Edited by moderator.[/color]

2007 AMC 12/AHSME, 19

Triangles $ ABC$ and $ ADE$ have areas $ 2007$ and $ 7002,$ respectively, with $ B \equal{} (0,0),$ $ C \equal{} (223,0),$ $ D \equal{} (680,380),$ and $ E \equal{} (689,389).$ What is the sum of all possible x-coordinates of $ A?$ $ \textbf{(A)}\ 282 \qquad \textbf{(B)}\ 300 \qquad \textbf{(C)}\ 600 \qquad \textbf{(D)}\ 900 \qquad \textbf{(E)}\ 1200$

2018 PUMaC Live Round, Calculus 3

Tags: calculus
Let $\mathcal{R}(f(x))$ denote the number of distinct real roots of $f(x)$. Compute $$\sum_{a=1}^{1009}\sum_{b=1010}^{2018}\mathcal{R}(x^{2018}-ax^{2016}+b).$$

2010 Today's Calculation Of Integral, 620

Let $a,\ b$ be real numbers. Suppose that a function $f(x)$ satisfies $f(x)=a\sin x+b\cos x+\int_{-\pi}^{\pi} f(t)\cos t\ dt$ and has the maximum value $2\pi$ for $-\pi \leq x\leq \pi$. Find the minimum value of $\int_{-\pi}^{\pi} \{f(x)\}^2dx.$ [i]2010 Chiba University entrance exam[/i]

2022 JHMT HS, 3

Let $x$ be a variable that can take any positive real value. For certain positive real constants $s$ and $t$, the value of $x^2 + \frac{s}{x}$ is minimized at $x = t$, and the value of $t^2\ln(2 + tx) + \frac{1}{x^2}$ is minimized at $x = s$. Compute the ordered pair $(s, t)$.

2005 Harvard-MIT Mathematics Tournament, 9

Compute \[ \displaystyle\sum_{k=0}^{\infty} \dfrac {4}{(4k)!}. \]

2001 China Western Mathematical Olympiad, 1

Find all real numbers $ x$ such that $ \lfloor x^3 \rfloor \equal{} 4x \plus{} 3$.

1989 China Team Selection Test, 3

Find the greatest $n$ such that $(z+1)^n = z^n + 1$ has all its non-zero roots in the unitary circumference, e.g. $(\alpha+1)^n = \alpha^n + 1, \alpha \neq 0$ implies $|\alpha| = 1.$

1985 Traian Lălescu, 1.2

Is there a real interval $ I $ for which there exists a primitivable function $ f:I\longrightarrow I $ with the property that $ (f\circ f) (x)=-x, $ for all $ x\in I $ ?

Today's calculation of integrals, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2024-25 IOQM India, 10

Determine the number of positive integral values of $p$ for which there exists a triangle with sides $a,b,$ and $c$ which satisfy $$a^2 + (p^2 + 9)b^2 + 9c^2 - 6ab - 6pbc = 0.$$

2011 Today's Calculation Of Integral, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

2013 AMC 10, 18

Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $? $ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $

2009 USA Team Selection Test, 9

Prove that for positive real numbers $x$, $y$, $z$, \[ x^3(y^2+z^2)^2 + y^3(z^2+x^2)^2+z^3(x^2+y^2)^2 \geq xyz\left[xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2\right].\] [i]Zarathustra (Zeb) Brady.[/i]

2004 Romania National Olympiad, 3

Let $f : \left[ 0,1 \right] \to \mathbb R$ be an integrable function such that \[ \int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1 . \] Prove that \[ \int_0^1 f^2 (x) \, dx \geq 4 . \] [i]Ion Rasa[/i]

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2014 Indonesia MO Shortlist, N4

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

2007 Today's Calculation Of Integral, 170

Let $a,\ b$ be constant numbers such that $a^{2}\geq b.$ Find the following definite integrals. (1) $I=\int \frac{dx}{x^{2}+2ax+b}$ (2) $J=\int \frac{dx}{(x^{2}+2ax+b)^{2}}$

2015 Mathematical Talent Reward Programme, MCQ: P 13

Define $f(x)=\max \{\sin x, \cos x\} .$ Find at how many points in $(-2 \pi, 2 \pi), f(x)$ is not differentiable? [list=1] [*] 0 [*] 2 [*] 4 [*] $\infty$ [/list]

2009 Today's Calculation Of Integral, 436

Find the minimum area bounded by the graphs of $ y\equal{}x^2$ and $ y\equal{}kx(x^2\minus{}k)\ (k>0)$.

2020 LIMIT Category 2, 16

The $n^{th}$ derivative of a function $f(x)$ (if it exists) is denoted by $f^{(n)}(x) $. Let $f(x)=\frac{e^x}{x}$. Suppose $f$ is differentiable infinitely many times in $(0,\infty) $. Then find $\lim_{n \to \infty}\frac{f^{(2n)}1}{(2n)!}$

2006 Petru Moroșan-Trident, 3

Let be a differentiable function $ f:\mathbb{R}_{> 0}\longrightarrow\mathbb{R}_{> 0} , $ and a primitive $ F:\mathbb{R}_{> 0}\longrightarrow\mathbb{R}_{> 0} $ of it such that $ F=f+f\cdot f. $ Show that: [b]a)[/b] $ f $ is nondecreasing. [b]b)[/b] $ \lim_{x\to\infty } f(x)/x =1/2 $ [i]Vasile Solovăstru[/i]

1968 Putnam, A1

Prove $ \ \ \ \frac{22}{7}\minus{}\pi \equal{}\int_0^1 \frac{x^4(1\minus{}x)^4}{1\plus{}x^2}\ dx$.

2007 Germany Team Selection Test, 1

The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$. [i]Proposed by Mariusz Skalba, Poland[/i]