Found problems: 2215
2011 ISI B.Stat Entrance Exam, 8
Let
\[I_n =\int_{0}^{n\pi} \frac{\sin x}{1+x} \, dx , \ \ \ \ n=1,2,3,4\]
Arrange $I_1, I_2, I_3, I_4$ in increasing order of magnitude. Justify your answer.
2003 AMC 10, 19
A semicircle of diameter $ 1$ sits at the top of a semicircle of diameter $ 2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
filldraw(Circle((0,.866),.5),grey,black);
label("1",(0,.866),S);
filldraw(Circle((0,0),1),white,black);
draw((-.5,.866)--(.5,.866),linetype("4 4"));
clip((-1,0)--(1,0)--(1,2)--(-1,2)--cycle);
draw((-1,0)--(1,0));
label("2",(0,0),S);[/asy]$ \textbf{(A)}\ \frac {1}{6}\pi \minus{} \frac {\sqrt {3}}{4} \qquad \textbf{(B)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{12}\pi \qquad \textbf{(C)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{24}\pi\qquad\textbf{(D)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{24}\pi$
$ \textbf{(E)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{12}\pi$
2007 Putnam, 3
Let $ x_0 \equal{} 1$ and for $ n\ge0,$ let $ x_{n \plus{} 1} \equal{} 3x_n \plus{} \left\lfloor x_n\sqrt {5}\right\rfloor.$ In particular, $ x_1 \equal{} 5,\ x_2 \equal{} 26,\ x_3 \equal{} 136,\ x_4 \equal{} 712.$ Find a closed-form expression for $ x_{2007}.$ ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)
2020 Jozsef Wildt International Math Competition, W3
Let $n \geq 2$ be an integer. Calculate$$\int \limits_{0}^{\frac{\pi}{2}}\frac{\sin x}{\sin^{2n-1}x+\cos^{2n-1}x}dx$$
2012 Traian Lălescu, 1
Let $a,b,c,\alpha,\beta,\gamma \in\mathbb{R}$ such as $a^2+b^2+c^2 \neq 0 \neq \alpha\beta\gamma$ and $24^{\alpha}\neq 3^{\beta} \neq 2012^{\gamma} \neq 24^{\alpha}$. Prove that the equation \[ a \cdot 24^{\alpha x}+b \cdot 3^{\beta x} + c \cdot 2012^{\gamma x}=0 \] has at most two real solutions.
2009 Today's Calculation Of Integral, 449
Evaluate $ \sum_{k\equal{}1}^n \int_0^{\pi} (\sin x\minus{}\cos kx)^2dx.$
2010 Today's Calculation Of Integral, 605
Let $f(x)$ be a differentiable function. Find the following limit value:
\[\lim_{n\to\infty} \dbinom{n}{k}\left\{f\left(\frac{x}{n}\right)-f(0)\right\}^k.\]
Especially, for $f(x)=(x-\alpha)(x-\beta)$ find the limit value above.
1956 Tokyo Institute of Technology entrance exam
1994 Balkan MO, 2
Let $n$ be an integer. Prove that the polynomial $f(x)$ has at most one zero, where \[ f(x) = x^4 - 1994 x^3 + (1993+n)x^2 - 11x + n . \]
[i]Greece[/i]
2023 OMpD, 4
Let $n \geq 0$ be an integer and $f: [0, 1] \rightarrow \mathbb{R}$ an integrable function such that: $$\int^1_0f(x)dx = \int^1_0xf(x)dx = \int^1_0x^2f(x)dx = \ldots = \int^1_0x^nf(x)dx = 1$$ Prove that: $$\int_0^1f(x)^2dx \geq (n+1)^2$$
1963 Putnam, A3
Find an integral formula for the solution of the differential equation
$$\delta (\delta-1)(\delta-2) \cdots(\delta -n +1) y= f(x), \;\;\, x\geq 1,$$
for $y$ as a function of $f$ satisfying the initial conditions $y(1)=y'(1)=\ldots= y^{(n-1)}(1)=0$, where $f$ is continuous and $\delta$ is the differential operator $ x \frac{d}{dx}.$
2011 Today's Calculation Of Integral, 717
Let $a_n$ be the area of the part enclosed by the curve $y=x^n\ (n\geq 1)$, the line $x=\frac 12$ and the $x$ axis.
Prove that :
\[0\leq \ln 2-\frac 12-(a_1+a_2+\cdots\cdots+a_n)\leq \frac {1}{2^{n+1}}\]
2005 Putnam, A6
Let $n$ be given, $n\ge 4,$ and suppose that $P_1,P_2,\dots,P_n$ are $n$ randomly, independently and uniformly, chosen points on a circle. Consider the convex $n$-gon whose vertices are the $P_i.$ What is the probability that at least one of the vertex angles of this polygon is acute.?
1974 AMC 12/AHSME, 26
The number of distinct positive integral divisors of $(30)^4$ excluding $1$ and $(30)^4$ is
$ \textbf{(A)}\ 100 \qquad\textbf{(B)}\ 125 \qquad\textbf{(C)}\ 123 \qquad\textbf{(D)}\ 30 \qquad\textbf{(E)}\ \text{none of these} $
2009 Today's Calculation Of Integral, 519
Evaluate $ \int_0^2 \frac{1}{\sqrt {1 \plus{} x^3}}\ dx$.
1994 Cono Sur Olympiad, 2
Solve the following equation in integers with gcd (x, y) = 1
$x^2 + y^2 = 2 z^2$
2007 Today's Calculation Of Integral, 215
For $ a\in\mathbb{R}$, let $ M(a)$ be the maximum value of the function $ f(x)\equal{}\int_{0}^{\pi}\sin (x\minus{}t)\sin (2t\minus{}a)\ dt$.
Evaluate $ \int_{0}^{\frac{\pi}{2}}M(a)\sin (2a)\ da$.
2009 Today's Calculation Of Integral, 492
Find the volume formed by the revolution of the region satisfying $ 0\leq y\leq (x \minus{} p)(q \minus{} x)\ (0 < p < q)$ in the coordinate plane about the $ y$ -axis.
You are not allowed to use the formula: $ V \equal{} \boxed{\int_a^b 2\pi x|f(x)|\ dx\ (a < b)}$ here.
2009 Turkey MO (2nd round), 2
Show that
\[ \frac{(b+c)(a^4-b^2c^2)}{ab+2bc+ca}+\frac{(c+a)(b^4-c^2a^2)}{bc+2ca+ab}+\frac{(a+b)(c^4-a^2b^2)}{ca+2ab+bc} \geq 0 \]
for all positive real numbers $a, \: b , \: c.$
2010 Today's Calculation Of Integral, 668
Consider two curves $y=\sin x,\ y=\sin 2x$ in $0\leq x\leq 2\pi$.
(1) Let $(\alpha ,\ \beta)\ (0<\alpha <\pi)$ be the intersection point of the curves. If $\sin x-\sin 2x$ has a local minimum at $x=x_1$ and a local maximum at $x=x_2$, then find the values of $\cos x_1,\ \cos x_1\cos x_2$.
(2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of $\alpha \leq x\leq \pi$ for the figure about the line $y=-1$.
[i]2011 Kyorin University entrance exam/Medicine [/i]
2008 District Olympiad, 1
Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a countinuous function such that
$$ \int_0^1 f(x)dx=\int_0^1 xf(x)dx. $$
Show that there is a $ c\in (0,1) $ such that $ f(c)=\int_0^c f(x)dx. $
2009 Today's Calculation Of Integral, 447
Evaluate $ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x^2}{(1\plus{}x\tan x)(x\minus{}\tan x)\cos ^ 2 x}\ dx.$
2007 Putnam, 2
Suppose that $ f: [0,1]\to\mathbb{R}$ has a continuous derivative and that $ \int_0^1f(x)\,dx\equal{}0.$
Prove that for every $ \alpha\in(0,1),$
\[ \left|\int_0^{\alpha}f(x)\,dx\right|\le\frac18\max_{0\le x\le 1}|f'(x)|\]
2018 Brazil Undergrad MO, 22
What is the value of the improper integral $ \int_0 ^ {\pi} \log (\sin (x)) dx$?
1989 IMO Shortlist, 26
Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which
\[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\]
where $ x_0, x_1, \ldots , x_n$ are real variables.
2010 Today's Calculation Of Integral, 640
Evaluate $\int_0^{\frac{\pi}{4}} \frac{1}{1-\sin x}\sqrt{\frac{\cos x}{1+\cos x+\sin x}}dx.$
Own