This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2007 Hanoi Open Mathematics Competitions, 12

Tags: calculus
Calculate the sum $\frac{1}{2.7.12} + \frac{1}{7.12.17} + ... + \frac{1}{1997.2002.2007}$.

2011 Today's Calculation Of Integral, 687

(1) Let $x>0,\ y$ be real numbers. For variable $t$, find the difference of Maximum and minimum value of the quadratic function $f(t)=xt^2+yt$ in $0\leq t\leq 1$. (2) Let $S$ be the domain of the points $(x,\ y)$ in the coordinate plane forming the following condition: For $x>0$ and all real numbers $t$ with $0\leq t\leq 1$ , there exists real number $z$ for which $0\leq xt^2+yt+z\leq 1$ . Sketch the outline of $S$. (3) Let $V$ be the domain of the points $(x,\ y,\ z) $ in the coordinate space forming the following condition: For $0\leq x\leq 1$ and for all real numbers $t$ with $0\leq t\leq 1$, $0\leq xt^2+yt+z\leq 1$ holds. Find the volume of $V$. [i]2011 Tokyo University entrance exam/Science, Problem 6[/i]

2009 Today's Calculation Of Integral, 398

In $ xyz$ space, find the volume of the solid expressed by the sytem of inequality: $ 0\leqq x\leqq 1,\ 0\leqq y\leqq 1,\ 0\leqq z\leqq 1$ $ x^2 \plus{} y^2 \plus{} z^2 \minus{} 2xy \minus{} 1\geqq 0$

2001 Romania National Olympiad, 3

Let $f:[-1,1]\rightarrow\mathbb{R}$ be a continuous function. Show that: a) if $\int_0^1 f(\sin (x+\alpha ))\, dx=0$, for every $\alpha\in\mathbb{R}$, then $f(x)=0,\ \forall x\in [-1,1]$. b) if $\int_0^1 f(\sin (nx))\, dx=0$, for every $n\in\mathbb{Z}$, then $f(x)=0,\ \forall x\in [-1,1]$.

1956 AMC 12/AHSME, 41

The equation $ 3y^2 \plus{} y \plus{} 4 \equal{} 2(6x^2 \plus{} y \plus{} 2)$ where $ y \equal{} 2x$ is satisfied by: $ \textbf{(A)}\ \text{no value of }x \qquad\textbf{(B)}\ \text{all values of }x \qquad\textbf{(C)}\ x \equal{} 0\text{ only}$ $ \textbf{(D)}\ \text{all integral values of }x\text{ only} \qquad\textbf{(E)}\ \text{all rational values of }x\text{ only}$

2019 ISI Entrance Examination, 4

Tags: calculus
Let $f:\mathbb{R}\to\mathbb{R}$ be a twice differentiable function such that $$\frac{1}{2y}\int_{x-y}^{x+y}f(t)\, dt=f(x)\qquad\forall~x\in\mathbb{R}~\&~y>0$$ Show that there exist $a,b\in\mathbb{R}$ such that $f(x)=ax+b$ for all $x\in\mathbb{R}$.

2009 Today's Calculation Of Integral, 407

Evaluate $ \int_0^1 (x \plus{} 3)\sqrt {xe^x}\ dx$.

2005 Today's Calculation Of Integral, 49

For $x\geq 0$, Prove that $\int_0^x (t-t^2)\sin ^{2002} t \,dt<\frac{1}{2004\cdot 2005}$

2017 IMC, 2

Tags: calculus , function
Let $f:\mathbb R\to(0,\infty)$ be a differentiabe function, and suppose that there exists a constant $L>0$ such that $$|f'(x)-f'(y)|\leq L|x-y|$$ for all $x,y$. Prove that $$(f'(x))^2<2Lf(x)$$ holds for all $x$.

2012 Today's Calculation Of Integral, 813

Let $a$ be a real number. Find the minimum value of $\int_0^1 |ax-x^3|dx$. How many solutions (including University Mathematics )are there for the problem? Any advice would be appreciated.

2007 Croatia Team Selection Test, 1

Find integral solutions to the equation \[(m^{2}-n^{2})^{2}=16n+1.\]

1990 Turkey Team Selection Test, 2

For real numbers $x_i$, the statement \[ x_1 + x_2 + x_3 = 0 \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 \leq 0\] is always true. (Prove!) For which $n\geq 4$ integers, the statement \[x_1 + x_2 + \dots + x_n = 0 \Rightarrow x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1 \leq 0\] is always true. Justify your answer.

2008 Harvard-MIT Mathematics Tournament, 7

([b]5[/b]) Find $ p$ so that $ \lim_{x\rightarrow\infty}x^p\left(\sqrt[3]{x\plus{}1}\plus{}\sqrt[3]{x\minus{}1}\minus{}2\sqrt[3]{x}\right)$ is some non-zero real number.

2011 Today's Calculation Of Integral, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

2010 Today's Calculation Of Integral, 651

Find \[\lim_{n\to\infty}\int _0^{2n} e^{-2x}\left|x-2\lfloor\frac{x+1}{2}\rfloor\right|\ dx.\] [i]1985 Tohoku University entrance exam/Mathematics, Physics, Chemistry, Biology[/i]

2010 Today's Calculation Of Integral, 629

Evaluate $\int_0^{\infty} \frac{1}{e^{x}(1+e^{4x})}dx.$

2011 Today's Calculation Of Integral, 698

For a positive integer $n$, let denote $C_n$ the figure formed by the inside and perimeter of the circle with center the origin, radius $n$ on the $x$-$y$ plane. Denote by $N(n)$ the number of a unit square such that all of unit square, whose $x,\ y$ coordinates of 4 vertices are integers, and the vertices are included in $C_n$. Prove that $\lim_{n\to\infty} \frac{N(n)}{n^2}=\pi$.

2008 Moldova MO 11-12, 1

Consider the equation $ x^4 \minus{} 4x^3 \plus{} 4x^2 \plus{} ax \plus{} b \equal{} 0$, where $ a,b\in\mathbb{R}$. Determine the largest value $ a \plus{} b$ can take, so that the given equation has two distinct positive roots $ x_1,x_2$ so that $ x_1 \plus{} x_2 \equal{} 2x_1x_2$.

2005 Today's Calculation Of Integral, 27

Let $f(x)=t\sin x+(1-t)\cos x\ (0\leqq t\leqq 1)$. Find the maximum and minimum value of the following $P(t)$. \[P(t)=\left\{\int_0^{\frac{\pi}{2}} e^x f(x) dx \right\}\left\{\int_0^{\frac{\pi}{2}} e^{-x} f(x)dx \right\}\]

2014 Indonesia MO, 2

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

2010 Today's Calculation Of Integral, 662

In $xyz$ space, let $A$ be the solid generated by a rotation of the figure, enclosed by the curve $y=2-2x^2$ and the $x$-axis about the $y$-axis. (1) When the solid is cut by the plane $x=a\ (|a|\leq 1)$, find the inequality which expresses the figure of the cross-section. (2) Denote by $L$ the distance between the point $(a,\ 0,\ 0)$ and the point on the perimeter of the cross-section found in (1), find the maximum value of $L$. (3) Find the volume of the solid by a rotation of the solid $A$ about the $x$-axis. [i]1987 Sophia University entrance exam/Science and Technology[/i]

2009 Today's Calculation Of Integral, 423

Let $ f(x)\equal{}x^2\plus{}3$ and $ y\equal{}g(x)$ be the equation of the line with the slope $ a$, which pass through the point $ (0,\ f(0))$ . Find the maximum and minimum values of $ I(a)\equal{}3\int_{\minus{}1}^1 |f(x)\minus{}g(x)|\ dx$.

2002 Moldova National Olympiad, 12.5

Let $0 \le a \le b \le c \le 3$ Prove : $(a-b)(a^2-9)+(a-c)(b^2-9)+(b-c)(c^2-9) \le 36$

2005 Gheorghe Vranceanu, 3

$ \lim_{n\to\infty }\left( \frac{1}{e}\sum_{i=0}^n \frac{1}{i!} \right)^{n!} $

2011 Today's Calculation Of Integral, 749

Let $m$ be a positive integer. A tangent line at the point $P$ on the parabola $C_1 : y=x^2+m^2$ intersects with the parabola $C_2 : y=x^2$ at the points $A,\ B$. For the point $Q$ between $A$ and $B$ on $C_2$, denote by $S$ the sum of the areas of the region bounded by the line $AQ$,$C_2$ and the region bounded by the line $QB$, $C_2$. When $Q$ move between $A$ and $B$ on $C_2$, prove that the minimum value of $S$ doesn't depend on how we would take $P$, then find the value in terms of $m$.