This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2004 France Team Selection Test, 1

Let $n$ be a positive integer, and $a_1,...,a_n, b_1,..., b_n$ be $2n$ positive real numbers such that $a_1 + ... + a_n = b_1 + ... + b_n = 1$. Find the minimal value of $ \frac {a_1^2} {a_1 + b_1} + \frac {a_2^2} {a_2 + b_2} + ...+ \frac {a_n^2} {a_n + b_n}$.

2009 Today's Calculation Of Integral, 403

Evaluate $ \int_0^1 \frac{2e^{2x}\plus{}xe^x\plus{}3e^x\plus{}1}{(e^x\plus{}1)^2(e^x\plus{}x\plus{}1)^2}\ dx$.

2012 Gulf Math Olympiad, 4

Fawzi cuts a spherical cheese completely into (at least three) slices of equal thickness. He starts at one end, making successive parallel cuts, working through the cheese until the slicing is complete. The discs exposed by the first two cuts have integral areas. [list](i) Prove that all the discs that he cuts have integral areas. (ii) Prove that the original sphere had integral surface area if, and only if, the area of the second disc that he exposes is even.[/list]

2002 CentroAmerican, 6

A path from $ (0,0)$ to $ (n,n)$ on the lattice is made up of unit moves upward or rightward. It is balanced if the sum of the x-coordinates of its $ 2n\plus{}1$ vertices equals the sum of their y-coordinates. Show that a balanced path divides the square with vertices $ (0,0)$, $ (n,0)$, $ (n,n)$, $ (0,n)$ into two parts with equal area.

PEN H Problems, 54

Show that the number of integral-sided right triangles whose ratio of area to semi-perimeter is $p^{m}$, where $p$ is a prime and $m$ is an integer, is $m+1$ if $p=2$ and $2m+1$ if $p \neq 2$.

1978 Putnam, A3

Find the value of $ k\ (0<k<5)$ such that $ \int_0^{\infty} \frac{x^k}{2\plus{}4x\plus{}3x^2\plus{}5x^3\plus{}3x^4\plus{}4x^5\plus{}2x^6}\ dx$ is minimal.

2010 District Olympiad, 4

Prove that exists sequences $ (a_n)_{n\ge 0}$ with $ a_n\in \{\minus{}1,\plus{}1\}$, for any $ n\in \mathbb{N}$, such that: \[ \lim_{n\rightarrow \infty}\left(\sqrt{n\plus{}a_1}\plus{}\sqrt{n\plus{}a_2}\plus{}...\plus{}\sqrt{n\plus{}a_n}\minus{}n\sqrt{n\plus{}a_0}\right)\equal{}\frac{1}{2}\]

1950 Miklós Schweitzer, 6

Consider an arc of a planar curve; let the radius of curvature at any point of the arc be a differentiable function of the arc length and its derivative be everywhere different from zero; moreover, let the total curvature be less than $ \frac{\pi}{2}$. Let $ P_1,P_2,P_3,P_4,P_5$ and $ P_6$ be any points on this arc, subject to the only condition that the radius of curvature at $ P_k$ is greater than at $ P_j$ if $ j<k$. Prove that the radius of the circle passing through the points $ P_1,P_3$ and $ P_5$ is less than the radius of the circle through $ P_2,P_4$ and $ P_6$

2012 District Olympiad, 1

Let $a,b,c$ three positive distinct real numbers. Evaluate: \[\lim_{t\to \infty} \int_0^t \frac{1}{(x^2+a^2)(x^2+b^2)(x^2+c^2)}dx\]

2010 Today's Calculation Of Integral, 541

Find the functions $ f(x),\ g(x)$ satisfying the following equations. (1) $ f'(x) \equal{} 2f(x) \plus{} 10,\ f(0) \equal{} 0$ (2) $ \int_0^x u^3g(u)du \equal{} x^4 \plus{} g(x)$

1999 Harvard-MIT Mathematics Tournament, 3

Find \[\int_{-4\pi\sqrt{2}}^{4\pi\sqrt{2}}\left(\dfrac{\sin x}{1+x^4}+1\right)dx.\]

2009 Tuymaada Olympiad, 4

Each of the subsets $ A_1$, $ A_2$, $ \dots,$ $ A_n$ of a 2009-element set $ X$ contains at least 4 elements. The intersection of every two of these subsets contains at most 2 elements. Prove that in $ X$ there is a 24-element subset $ B$ containing neither of the sets $ A_1$, $ A_2$, $ \dots,$ $ A_n$.

2010 Today's Calculation Of Integral, 602

Prove the following inequality. \[\frac{e-1}{n+1}\leqq\int^e_1(\log x)^n dx\leqq\frac{(n+1)e+1}{(n+1)(n+2)}\ (n=1,2,\cdot\cdot\cdot) \] 1994 Kyoto University entrance exam/Science

1941 Putnam, A2

Find the $n$-th derivative with respect to $x$ of $$\int_{0}^{x} \left(1+\frac{x-t}{1!}+\frac{(x-t)^{2}}{2!}+\ldots+\frac{(x-t)^{n-1}}{(n-1)!}\right)e^{nt} dt.$$

2012 Today's Calculation Of Integral, 849

Evaluate $\int_1^{e^2} \frac{(2x^2+2x+1)e^{x}}{\sqrt{x}}\ dx.$

2009 Today's Calculation Of Integral, 476

Suppose a parabola with the axis as the $ y$ axis, concave up and touches the graph $ y\equal{}1\minus{}|x|$. Find the equation of the parabola such that the area of the region surrounded by the parabola and the $ x$ axis is maximal.

2012 Today's Calculation Of Integral, 816

Find the volume of the solid of a circle $x^2+(y-1)^2=4$ generated by a rotation about the $x$-axis.

2012 Today's Calculation Of Integral, 828

Find a function $f(x)$, which is differentiable and $f'(x) $ is continuous, such that $\int_0^x f(t)\cos (x-t)\ dt=xe^{2x}.$

1963 AMC 12/AHSME, 20

Two men at points $R$ and $S$, $76$ miles apart, set out at the same time to walk towards each other. The man at $R$ walks uniformly at the rate of $4\dfrac{1}{2}$ miles per hour; the man at $S$ walks at the constant rate of $3\dfrac{1}{4}$ miles per hour for the first hour, at $3\dfrac{3}{4}$ miles per hour for the second hour, and so on, in arithmetic progression. If the men meet $x$ miles nearer $R$ than $S$ in an integral number of hours, then $x$ is: $\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 2$

2014 Contests, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

Today's calculation of integrals, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

2011 Today's Calculation Of Integral, 693

Evaluate $\int_0^{\pi} \sqrt[4]{1+|\cos x|}\ dx.$ created by kunny

2009 Today's Calculation Of Integral, 474

Calculate the following indefinite integrals. (1) $ \int \frac {3x \plus{} 4}{x^2 \plus{} 3x \plus{} 2}dx$ (2) $ \int \sin 2x\cos 2x\cos 4x\ dx$ (3) $ \int xe^{x}dx$ (4) $ \int 5^{x}dx$

Today's calculation of integrals, 883

Prove that for each positive integer $n$ \[\frac{4n^2+1}{4n^2-1}\int_0^{\pi} (e^{x}-e^{-x})\cos 2nx\ dx>\frac{e^{\pi}-e^{-\pi}-2}{4}\ln \frac{(2n+1)^2}{(2n-1)(n+3)}.\]

2007 Today's Calculation Of Integral, 213

Find the minimum value of $ f(a)=\int_{0}^{1}x|x-a|\ dx$.