This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2010 Today's Calculation Of Integral, 628

(1) Evaluate the following definite integrals. (a) $\int_0^{\frac{\pi}{2}} \cos ^ 2 x\sin x\ dx$ (b) $\int_0^{\frac{\pi}{2}} (\pi - 2x)\cos x\ dx$ (c) $\int_0^{\frac{\pi}{2}} x\cos ^ 3 x\ dx$ (2) Let $a$ be a positive constant. Find the area of the cross section cut by the plane $z=\sin \theta \ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ of the solid such that \[x^2+y^2+z^2\leq a^2,\ \ x^2+y^2\leq ax,\ \ z\geq 0\] , then find the volume of the solid. [i]1984 Yamanashi Medical University entrance exam[/i] Please slove the problem without multi integral or arcsine function for Japanese high school students aged 17-18 those who don't study them. Thanks in advance. kunny

2011 Today's Calculation Of Integral, 723

Evaluate $\int_1^e \frac{\{1-(x-1)e^{x}\}\ln x}{(1+e^x)^2}dx.$

2017 Mathematical Talent Reward Programme, MCQ: P 10

Let $f:\mathbb{R}\to \mathbb{R}$ be a differentiable function such that $\lim \limits_{x\to \infty}f'(x)=1$, then [list=1] [*] $f$ is increasing [*] $f$ is unbounded [*] $f'$ is bounded [*] All of these [/list]

2010 Today's Calculation Of Integral, 556

Prove the following inequality. \[ \sqrt[3]{\int_0^{\frac {\pi}{4}} \frac {x}{\cos ^ 2 x\cos ^ 2 (\tan x)\cos ^ 2(\tan (\tan x))\cos ^ 2(\tan (\tan (\tan x)))}dx}<\frac{4}{\pi}\] Last Edited. Sorry, I have changed the problem. kunny

1984 Vietnam National Olympiad, 1

$(a)$ Let $x, y$ be integers, not both zero. Find the minimum possible value of $|5x^2 + 11xy - 5y^2|$. $(b)$ Find all positive real numbers $t$ such that $\frac{9t}{10}=\frac{[t]}{t - [t]}$.

2014 Contests, 2

For some positive integers $m,n$, the system $x+y^2 = m$ and $x^2+y = n$ has exactly one integral solution $(x,y)$. Determine all possible values of $m-n$.

2002 Putnam, 1

Let $k$ be a fixed positive integer. The $n$th derivative of $\tfrac{1}{x^k-1}$ has the form $\tfrac{P_n(x)}{(x^k-1)^{n+1}}$, where $P_n(x)$ is a polynomial. Find $P_n(1)$.

2019 Jozsef Wildt International Math Competition, W. 10

If ${si}(x) =- \int \limits_{x}^{\infty}\left(\frac{\sin t}{t}\right)dt; x>0$ then $$\int \limits_{e}^{e^2} \left(\frac{1}{x}\left(si\left(e^4x\right)-si\left(e^3x\right)\right)\right)\,dx=\int \limits_{3}^{e^4} \left(\frac{1}{x}\left(\operatorname{si}\left(e^2x\right)-si\left(ex\right)\right)\right)dx$$

1999 Putnam, 4

Let $f$ be a real function with a continuous third derivative such that $f(x)$, $f^\prime(x)$, $f^{\prime\prime}(x)$, $f^{\prime\prime\prime}(x)$ are positive for all $x$. Suppose that $f^{\prime\prime\prime}(x)\leq f(x)$ for all $x$. Show that $f^\prime(x)<2f(x)$ for all $x$.

2011 Today's Calculation Of Integral, 679

Find $\sum_{k=1}^{3n} \frac{1}{\int_0^1 x(1-x)^k\ dx}$. [i]2011 Hosei University entrance exam/Design and Enginerring[/i]

2009 Today's Calculation Of Integral, 508

Compare the size of the definite integrals? \[ \int_0^{\frac {\pi}{4}} x^{2008}\tan ^{2008}x\ dx,\ \int_0^{\frac {\pi}{4}} x^{2009}\tan ^{2009}x\ dx,\ \int_0^{\frac {\pi}{4}} x^{2010}\tan ^{2010}x\ dx\]

2012 Bogdan Stan, 2

Find the continuous functions $ f:\left[ 0,\frac{1}{3} \right] \longrightarrow (0,\infty ) $ that satisfy the functional relation $$ 54\int_0^{1/3} f(x)dx +32\int_0^{1/3} \frac{dx}{\sqrt{x+f(x)}} =21. $$ [i]Cristinel Mortici[/i]

2011 Today's Calculation Of Integral, 738

Answer the following questions: (1) Find the value of $a$ for which $S=\int_{-\pi}^{\pi} (x-a\sin 3x)^2dx$ is minimized, then find the minimum value. (2) Find the vlues of $p,\ q$ for which $T=\int_{-\pi}^{\pi} (\sin 3x-px-qx^2)^2dx$ is minimized, then find the minimum value.

2001 Vietnam National Olympiad, 3

For real $a, b$ define the sequence $x_{0}, x_{1}, x_{2}, ...$ by $x_{0}= a, x_{n+1}= x_{n}+b \sin x_{n}$. If $b = 1$, show that the sequence converges to a finite limit for all $a$. If $b > 2$, show that the sequence diverges for some $a$.

2005 Today's Calculation Of Integral, 1

Calculate the following indefinite integral. [1] $\int \frac{e^{2x}}{(e^x+1)^2}dx$ [2] $\int \sin x\cos 3x dx$ [3] $\int \sin 2x\sin 3x dx$ [4] $\int \frac{dx}{4x^2-12x+9}$ [5] $\int \cos ^4 x dx$

2005 Harvard-MIT Mathematics Tournament, 7

Tags: conic , parabola , calculus
Two ants, one starting at $ (-1, 1) $, the other at $ (1, 1) $, walk to the right along the parabola $ y = x^2 $ such that their midpoint moves along the line $ y = 1 $ with constant speed $1$. When the left ant first hits the line $ y = \frac {1}{2} $, what is its speed?

1979 Canada National Olympiad, 4

Tags: calculus
A dog standing at the centre of a circular arena sees a rabbit at the wall. The rabbit runs round the wall and the dog pursues it along a unique path which is determined by running at the same speed and staying on the radial line joining the centre of the arena to the rabbit. Show that the dog overtakes the rabbit just as it reaches a point one-quarter of the way around the arena.

2011 Today's Calculation Of Integral, 691

Let $a$ be a constant. In the $xy$ palne, the curve $C_1:y=\frac{\ln x}{x}$ touches $C_2:y=ax^2$. Find the volume of the solid generated by a rotation of the part enclosed by $C_1,\ C_2$ and the $x$ axis about the $x$ axis. [i]2011 Yokohama National Universty entrance exam/Engineering[/i]

2010 Today's Calculation Of Integral, 616

Evaluate $\int_1^3 \frac{\ln (x+1)}{x^2}dx$. [i]2010 Hirosaki University entrance exam[/i]

2019 Jozsef Wildt International Math Competition, W. 52

Let $f : \mathbb{R} \to \mathbb{R}$ a periodic and continue function with period $T$ and $F : \mathbb{R} \to \mathbb{R}$ antiderivative of $f$. Then $$\int \limits_0^T \left[F(nx)-F(x)-f(x)\frac{(n-1)T}{2}\right]dx=0$$

1991 Arnold's Trivium, 38

Calculate the integral of the Gaussian curvature of the surface \[z^4+(x^2+y^2-1)(2x^2+3y^2-1)=0\]

2019 Jozsef Wildt International Math Competition, W. 62

Prove that $$\int \limits_0^{\frac{\pi}{2}}(\cos x)^{1+\sqrt{2n+1}}dx\leq \frac{2^{n-1}n!\sqrt{\pi}}{\sqrt{2(2n+1)!}}$$for all $n\in \mathbb{N}^*$

2007 Today's Calculation Of Integral, 223

Evaluate $ \int_{0}^{\pi}\sqrt{(\cos x\plus{}\cos 2x\plus{}\cos 3x)^{2}\plus{}(\sin x\plus{}\sin 2x\plus{}\sin 3x)^{2}}\ dx$.

2008 Harvard-MIT Mathematics Tournament, 8

Let $ T \equal{} \int_0^{\ln2} \frac {2e^{3x} \plus{} e^{2x} \minus{} 1} {e^{3x} \plus{} e^{2x} \minus{} e^x \plus{} 1}dx$. Evaluate $ e^T$.

1999 National High School Mathematics League, 2

The number of intengral points $(x,y)$ that fit $(|x|-1)^2+(|y|-1)^2<2$ is $\text{(A)}16\qquad\text{(B)}17\qquad\text{(C)}18\qquad\text{(D)}25$