This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2012 Today's Calculation Of Integral, 840

Let $x,\ y$ be real numbers. For a function $f(t)=x\sin t+y\cos t$, draw the domain of the points $(x,\ y)$ for which the following inequality holds. \[\left|\int_{-\pi}^{\pi} f(t)\cos t\ dt\right|\leq \int_{-\pi}^{\pi} \{f(t)\}^2dt.\]

2008 Vietnam National Olympiad, 1

Determine the number of solutions of the simultaneous equations $ x^2 \plus{} y^3 \equal{} 29$ and $ \log_3 x \cdot \log_2 y \equal{} 1.$

2009 Romania National Olympiad, 4

Find all functions $ f:[0,1]\longrightarrow [0,1] $ that are bijective, continuous and have the property that, for any continuous function $ g:[0,1]\longrightarrow\mathbb{R} , $ the following equality holds. $$ \int_0^1 g\left( f(x) \right) dx =\int_0^1 g(x) dx $$

2010 Moldova National Olympiad, 12.8

Find all $t\in \mathbb R$, such that $\int_{0}^{\frac{\pi}{2}}\mid \sin x+t\cos x\mid dx=1$ .

2018 Vietnam National Olympiad, 1

Tags: calculus , sequence , limit
The sequence $(x_n)$ is defined as follows: $$x_1=2,\, x_{n+1}=\sqrt{x_n+8}-\sqrt{x_n+3}$$ for all $n\geq 1$. a. Prove that $(x_n)$ has a finite limit and find that limit. b. For every $n\geq 1$, prove that $$n\leq x_1+x_2+\dots +x_n\leq n+1.$$

2013 Romania National Olympiad, 1

Determine continuous functions $f:\mathbb{R}\to \mathbb{R}$ such that $\left( {{a}^{2}}+ab+{{b}^{2}} \right)\int\limits_{a}^{b}{f\left( x \right)dx=3\int\limits_{a}^{b}{{{x}^{2}}f\left( x \right)dx,}}$ for every $a,b\in \mathbb{R}$ .

2010 Harvard-MIT Mathematics Tournament, 4

Compute $\displaystyle\lim_{n\to\infty}\dfrac{\sum_{k=1}^n|\cos(k)|}{n}$.

1999 Tuymaada Olympiad, 4

A right parallelepiped (i.e. a parallelepiped one of whose edges is perpendicular to a face) is given. Its vertices have integral coordinates, and no other points with integral coordinates lie on its faces or edges. Prove that the volume of this parallelepiped is a sum of three perfect squares. [i]Proposed by A. Golovanov[/i]

2010 Today's Calculation Of Integral, 538

Evaluate $ \int_1^{\sqrt{2}} \frac{x^2\plus{}1}{x\sqrt{x^4\plus{}1}}\ dx$.

2013 Waseda University Entrance Examination, 3

Let $f(x)=\frac 12e^{2x}+2e^x+x$. Answer the following questions. (1) For a real number $t$, set $g(x)=tx-f(x).$ When $x$ moves in the range of all real numbers, find the range of $t$ for which $g(x)$ has maximum value, then for the range of $t$, find the maximum value of $g(x)$ and the value of $x$ which gives the maximum value. (2) Denote by $m(t)$ the maximum value found in $(1)$. Let $a$ be a constant, consider a function of $t$, $h(t)=at-m(t)$. When $t$ moves in the range of $t$ found in $(1)$, find the maximum value of $h(t)$.

2009 Princeton University Math Competition, 5

Find the maximal positive integer $n$, so that for any real number $x$ we have $\sin^{n}{x}+\cos^{n}{x} \geq \frac{1}{n}$.

2005 Harvard-MIT Mathematics Tournament, 8

If $f$ is a continuous real function such that $ f(x-1) + f(x+1) \ge x + f(x) $ for all $x$, what is the minimum possible value of $ \displaystyle\int_{1}^{2005} f(x) \, \mathrm{d}x $?

2011 Today's Calculation Of Integral, 722

Find the continuous function $f(x)$ such that : \[\int_0^x f(t)\left(\int_0^t f(t)dt\right)dt=f(x)+\frac 12\]

2014 Online Math Open Problems, 16

Let $OABC$ be a tetrahedron such that $\angle AOB = \angle BOC = \angle COA = 90^\circ$ and its faces have integral surface areas. If $[OAB] = 20$ and $[OBC] = 14$, find the sum of all possible values of $[OCA][ABC]$. (Here $[\triangle]$ denotes the area of $\triangle$.) [i]Proposed by Robin Park[/i]

2006 Harvard-MIT Mathematics Tournament, 5

Compute $\displaystyle\int_0^1\dfrac{dx}{\sqrt{x}+\sqrt[3]{x}}$.

2007 Harvard-MIT Mathematics Tournament, 10

Compute \[\int_0^\infty \dfrac{e^{-x}\sin(x)}{x}dx\]

2011 Morocco National Olympiad, 1

Find the maximum value of the real constant $C$ such that $x^{2}+y^{2}+1\geq C(x+y)$, and $ x^{2}+y^{2}+xy+1\geq C(x+y)$ for all reals $x,y$.

2013 Today's Calculation Of Integral, 895

In the coordinate plane, suppose that the parabola $C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)$ touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of $y\geq 0$ of $C$ and the $x$-axis.

2006 Harvard-MIT Mathematics Tournament, 3

At time $0$, an ant is at $(1,0)$ and a spider is at $(-1,0)$. The ant starts walking counterclockwise around the unit circle, and the spider starts creeping to the right along the $x$-axis. It so happens that the ant's horizontal speed is always half the spider's. What will the shortest distance ever between the ant and the spider be?

2013 Online Math Open Problems, 48

$\omega$ is a complex number such that $\omega^{2013} = 1$ and $\omega^m \neq 1$ for $m=1,2,\ldots,2012$. Find the number of ordered pairs of integers $(a,b)$ with $1 \le a, b \le 2013$ such that \[ \frac{(1 + \omega + \cdots + \omega^a)(1 + \omega + \cdots + \omega^b)}{3} \] is the root of some polynomial with integer coefficients and leading coefficient $1$. (Such complex numbers are called [i]algebraic integers[/i].) [i]Victor Wang[/i]

2009 ISI B.Stat Entrance Exam, 6

Let $f(x)$ be a function satisfying \[xf(x)=\ln x \ \ \ \ \ \ \ \ \text{for} \ \ x>0\] Show that $f^{(n)}(1)=(-1)^{n+1}n!\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)$ where $f^{(n)}(x)$ denotes the $n$-th derivative evaluated at $x$.

2009 Today's Calculation Of Integral, 415

For a function $ f(x) \equal{} 6x(1 \minus{} x)$, suppose that positive constant $ c$ and a linear function $ g(x) \equal{} ax \plus{} b\ (a,\ b: \text{constants}\,\ a > 0)$ satisfy the following 3 conditions: $ c^2\int_0^1 f(x)\ dx \equal{} 1,\ \int_0^1 f(x)\{g(x)\}^2\ dx \equal{} 1,\ \int_0^1 f(x)g(x)\ dx \equal{} 0$. Answer the following questions. (1) Find the constants $ a,\ b,\ c$. (2) For natural number $ n$, let $ I_n \equal{} \int_0^1 x^ne^x\ dx$. Express $ I_{n \plus{} 1}$ in terms of $ I_n$. Then evaluate $ I_1,\ I_2,\ I_3$. (3) Evaluate the definite integrals $ \int_0^1 e^xf(x)\ dx$ and $ \int_0^1 e^xf(x)g(x)\ dx$. (4) For real numbers $ s,\ t$, define $ J \equal{} \int_0^1 \{e^x \minus{} cs \minus{} tg(x)\}^2\ dx$. Find the constants $ A,\ B,\ C,\ D,\ E$ by setting $ J \equal{} As^2 \plus{} Bst \plus{} Ct^2 \plus{} Ds\plus{}Et \plus{} F$. (You don't need to find the constant $ F$). (5) Find the values of $ s,\ t$ for which $ J$ is minimal.

2001 Romania National Olympiad, 1

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ a continuous function, derivable on $R\backslash\{x_0\}$, having finite side derivatives in $x_0$. Show that there exists a derivable function $g:\mathbb{R}\rightarrow\mathbb{R}$, a linear function $h:\mathbb{R}\rightarrow\mathbb{R}$ and $\alpha\in\{-1,0,1\}$ such that: \[ f(x)=g(x)+\alpha |h(x)|,\ \forall x\in\mathbb{R} \]

2007 Moldova Team Selection Test, 2

If $b_{1}, b_{2}, \ldots, b_{n}$ are non-negative reals not all zero, then prove that the polynomial \[x^{n}-b_{1}x^{n-1}-b_{2}x^{n-2}-\ldots-b_{n}=0\] has only one positive root $p$, which is simple. Moreover prove that any root of the polynomial does not exceed $p$ in absolute value.

2010 Today's Calculation Of Integral, 598

For a constant $a$, denote $C(a)$ the part $x\geq 1$ of the curve $y=\sqrt{x^2-1}+\frac{a}{x}$. (1) Find the maximum value $a_0$ of $a$ such that $C(a)$ is contained to lower part of $y=x$, or $y<x$. (2) For $0<\theta <\frac{\pi}{2}$, find the volume $V(\theta)$ of the solid $V$ obtained by revoloving the figure bounded by $C(a_0)$ and three lines $y=x,\ x=1,\ x=\frac{1}{\cos \theta}$ about the $x$-axis. (3) Find $\lim_{\theta \rightarrow \frac{\pi}{2}-0} V(\theta)$. 1992 Tokyo University entrance exam/Science, 2nd exam