This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2007 Moldova National Olympiad, 12.4

If the function $f\colon [1,2]\to R$ is such that $\int_{1}^{2}f(x) dx=\frac{73}{24}$, then show that there exists a $x_{0}\in (1;2)$ such that \[x_{0}^{2}<f(x_{0})<x_{0}^{3}\] [Edit: $f$ is continuous]

2022 JHMT HS, 2

Suppose that $f$ is a differentiable function such that $f(0) = 20$ and $|f'(x)| \leq 4$ for all real numbers $x$. Let $a$ and $b$ be real numbers such that [i]every[/i] such function $f$ satisfies $a \leq f(22) \leq b$. Find the smallest possible value of $|a| + |b|$.

1991 Arnold's Trivium, 18

Calculate \[\int\cdots\int \exp\left(-\sum_{1\le i\le j\le n}x_ix_j\right)dx_1\cdots dx_n\]

Oliforum Contest I 2008, 3

Let $ a,b,c$ be three pairwise distinct real numbers such that $ a\plus{}b\plus{}c\equal{}6\equal{}ab\plus{}bc\plus{}ca\minus{}3$. Prove that $ 0<abc<4$.

2019 Peru Cono Sur TST, P6

Two polynomials of the same degree $A(x)=a_nx^n+ \cdots + a_1x+a_0$ and $B(x)=b_nx^n+\cdots+b_1x+b_0$ are called [i]friends[/i] is the coefficients $b_0,b_1, \ldots, b_n$ are a permutation of the coefficients $a_0,a_1, \ldots, a_n$. $P(x)$ and $Q(x)$ be two friendly polynomials with integer coefficients. If $P(16)=3^{2020}$, the smallest possible value of $|Q(3^{2020})|$.

2004 Vietnam National Olympiad, 3

Let $ S(n)$ be the sum of decimal digits of a natural number $ n$. Find the least value of $ S(m)$ if $ m$ is an integral multiple of $ 2003$.

2007 Today's Calculation Of Integral, 171

Evaluate $\int_{0}^{1}x^{2007}(1-x^{2})^{1003}dx.$

2009 Today's Calculation Of Integral, 419

In the $ xy$ plane, the line $ l$ touches to 2 parabolas $ y\equal{}x^2\plus{}ax,\ y\equal{}x^2\minus{}2ax$, where $ a$ is positive constant. (1) Find the equation of $ l$. (2) Find the area $ S$ bounded by the parabolas and the tangent line $ l$.

1991 Putnam, A5

A5) Find the maximum value of $\int_{0}^{y}\sqrt{x^{4}+(y-y^{2})^{2}}dx$ for $0\leq y\leq 1$. I don't have a solution for this yet. I figure this may be useful: Let the integral be denoted $f(y)$, then according to the [url=http://mathworld.wolfram.com/LeibnizIntegralRule.html]Leibniz Integral Rule[/url] we have $\frac{df}{dy}=\int_{0}^{y}\frac{y(1-y)(1-2y)}{\sqrt{x^{4}+(y-y^{2})^{2}}}dx+\sqrt{y^{4}+(y-y^{2})^{2}}$ Now what?

2009 VJIMC, Problem 2

Let $E$ be the set of all continuously differentiable real valued functions $f$ on $[0,1]$ such that $f(0)=0$ and $f(1)=1$. Define $$J(f)=\int^1_0(1+x^2)f'(x)^2\text dx.$$ a) Show that $J$ achieves its minimum value at some element of $E$. b) Calculate $\min_{f\in E}J(f)$.

2024 Mongolian Mathematical Olympiad, 1

Let $P(x)$ and $Q(x)$ be polynomials with nonnegative coefficients. We denote by $P'(x)$ the derivative of $P(x)$. Suppose that $P(0)=Q(0)=0$ and $Q(1) \leq 1 \leq P'(0)$. $(1)$ Prove that $0 \leq Q(x) \leq x \leq P(x)$ for all $0 \leq x \leq 1$. $(2)$ Prove that $P(Q(x)) \leq Q(P(x))$ for all $0 \leq x \leq 1$. [i]Proposed by Otgonbayar Uuye.[/i]

2012 VJIMC, Problem 1

Tags: function , calculus
Let $f:[0,1]\to[0,1]$ be a differentiable function such that $|f'(x)|\ne1$ for all $x\in[0,1]$. Prove that there exist unique $\alpha,\beta\in[0,1]$ such that $f(\alpha)=\alpha$ and $f(\beta)=1-\beta$.

1997 China Team Selection Test, 3

Prove that there exists $m \in \mathbb{N}$ such that there exists an integral sequence $\lbrace a_n \rbrace$ which satisfies: [b]I.[/b] $a_0 = 1, a_1 = 337$; [b]II.[/b] $(a_{n + 1} a_{n - 1} - a_n^2) + \frac{3}{4}(a_{n + 1} + a_{n - 1} - 2a_n) = m, \forall$ $n \geq 1$; [b]III. [/b]$\frac{1}{6}(a_n + 1)(2a_n + 1)$ is a perfect square $\forall$ $n \geq 1$.

2010 Today's Calculation Of Integral, 583

Find the values of $ k$ such that the areas of the three parts bounded by the graph of $ y\equal{}\minus{}x^4\plus{}2x^2$ and the line $ y\equal{}k$ are all equal.

1987 AIME Problems, 3

By a proper divisor of a natural number we mean a positive integral divisor other than 1 and the number itself. A natural number greater than 1 will be called "nice" if it is equal to the product of its distinct proper divisors. What is the sum of the first ten nice numbers?

2018 VTRMC, 5

For $n \in \mathbb{N}$, let $a_n = \int _0 ^{1/\sqrt{n}} | 1 + e^{it} + e^{2it} + \dots + e^{nit} | \ dt$. Determine whether the sequence $(a_n) = a_1, a_2, \dots$ is bounded.

2010 Today's Calculation Of Integral, 601

Evaluate $\int_0^{\frac{\pi}{4}} (\tan x)^{\frac{3}{2}}dx$. created by kunny

2012 Centers of Excellency of Suceava, 4

Let be the sequence $ \left( J_n \right)_{n\ge 1} , $ where $ J_n=\int_{(1+n)^2}^{1+(1+n)^2} \sqrt{\frac{x-1-n-n^2}{x-1}} dx. $ [b]a)[/b] Study its monotony. [b]b)[/b] Calculate $ \lim_{n\to\infty } J_n\sqrt{n} . $ [i]Ion Bursuc[/i]

2009 Today's Calculation Of Integral, 443

Evaluate $ \int_1^{e^2} \frac{(e^{\sqrt{x}}\minus{}e^{\minus{}\sqrt{x}})\cos \left(e^{\sqrt{x}}\plus{}e^{\minus{}\sqrt{x}}\plus{}\frac{\pi}{4}\right)\plus{}(e^{\sqrt{x}}\plus{}e^{\minus{}\sqrt{x}})\cos \left(e^{\sqrt{x}}\minus{}e^{\minus{}\sqrt{x}}\plus{}\frac{\pi}{4}\right)}{\sqrt{x}}\ dx.$

2007 Today's Calculation Of Integral, 189

Let $n$ be positive integers. Denote the graph of $y=\sqrt{x}$ by $C,$ and the line passing through two points $(n,\ \sqrt{n})$ and $(n+1,\ \sqrt{n+1})$ by $l.$ Let $V$ be the volume of the solid obtained by revolving the region bounded by $C$ and $l$ around the $x$ axis.Find the positive numbers $a,\ b$ such that $\lim_{n\to\infty}n^{a}V=b.$

2012 AMC 12/AHSME, 24

Let $\{a_k\}^{2011}_{k=1}$ be the sequence of real numbers defined by $$a_1=0.201, \quad a_2=(0.2011)^{a_1},\quad a_3=(0.20101)^{a_2},\quad a_4=(0.201011)^{a_3},$$ and more generally \[ a_k = \begin{cases}(0.\underbrace{20101\cdots0101}_{k+2 \ \text{digits}})^{a_{k-1}}, &\text {if } k \text { is odd,} \\ (0.\underbrace{20101\cdots01011}_{k+2 \ \text{digits}})^{a_{k-1}}, &\text {if } k \text { is even.}\end{cases} \] Rearranging the numbers in the sequence $\{a_k\}^{2011}_{k=1}$ in decreasing order produces a new sequence $\{b_k\}^{2011}_{k=1}$. What is the sum of all the integers $k$, $1\le k \le 2011$, such that $a_k = b_k$? $ \textbf{(A)}\ 671\qquad\textbf{(B)}\ 1006\qquad\textbf{(C)}\ 1341\qquad\textbf{(D)}\ 2011\qquad\textbf{(E)}\ 2012 $

2010 Today's Calculation Of Integral, 638

Let $(a,\ b)$ be a point on the curve $y=\frac{x}{1+x}\ (x\geq 0).$ Denote $U$ the volume of the figure enclosed by the curve , the $x$ axis and the line $x=a$, revolved around the the $x$ axis and denote $V$ the volume of the figure enclosed by the curve , the $y$ axis and th line $y=b$, revolved around the $y$ axis. What's the relation of $U$ and $V?$ 1978 Chuo university entrance exam/Science and Technology

2010 Today's Calculation Of Integral, 600

Evaluate $\int_{-a}^a \left(x+\frac{1}{\sin x+\frac{1}{e^x-e^{-x}}}\right)dx\ (a>0)$. created by kunny

1967 Miklós Schweitzer, 9

Let $ F$ be a surface of nonzero curvature that can be represented around one of its points $ P$ by a power series and is symmetric around the normal planes parallel to the principal directions at $ P$. Show that the derivative with respect to the arc length of the curvature of an arbitrary normal section at $ P$ vanishes at $ P$. Is it possible to replace the above symmetry condition by a weaker one? [i]A. Moor[/i]