Found problems: 2215
2013 Today's Calculation Of Integral, 863
For $0<t\leq 1$, let $F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.$
(1) Find $\lim_{t\rightarrow 0} F(t).$
(2) Find the range of $t$ such that $F(t)\geq 1.$
2012 Putnam, 4
Suppose that $a_0=1$ and that $a_{n+1}=a_n+e^{-a_n}$ for $n=0,1,2,\dots.$ Does $a_n-\log n$ have a finite limit as $n\to\infty?$ (Here $\log n=\log_en=\ln n.$)
2007 F = Ma, 9
A large wedge rests on a horizontal frictionless surface, as shown. A block starts from rest and slides down the inclined surface of the wedge, which is rough. During the motion of the block, the center of mass of the block and wedge
[asy]
draw((0,0)--(10,0),linewidth(1));
filldraw((2.5,0)--(6.5,2.5)--(6.5,0)--cycle, gray(.9),linewidth(1));
filldraw((5, 12.5/8)--(6,17.5/8)--(6-5/8, 17.5/8+1)--(5-5/8,12.5/8+1)--cycle, gray(.2));
[/asy]
$\textbf{(A)}\ \text{does not move}$
$\textbf{(B)}\ \text{moves horizontally with constant speed}$
$\textbf{(C)}\ \text{moves horizontally with increasing speed}$
$\textbf{(D)}\ \text{moves vertically with increasing speed}$
$\textbf{(E)}\ \text{moves both horizontally and vertically}$
2009 Moldova Team Selection Test, 2
[color=darkred]Let $ m,n\in \mathbb{N}$, $ n\ge 2$ and numbers $ a_i > 0$, $ i \equal{} \overline{1,n}$, such that $ \sum a_i \equal{} 1$. Prove that
$ \small{\dfrac{a_1^{2 \minus{} m} \plus{} a_2 \plus{} ... \plus{} a_{n \minus{} 1}}{1 \minus{} a_1} \plus{} \dfrac{a_2^{2 \minus{} m} \plus{} a_3 \plus{} ... \plus{} a_n}{1 \minus{} a_1} \plus{} ... \plus{} \dfrac{a_n^{2 \minus{} m} \plus{} a_1 \plus{} ... \plus{} a_{n \minus{} 2}}{1 \minus{} a_1}\ge n \plus{} \dfrac{n^m \minus{} n}{n \minus{} 1}}$[/color]
2007 Princeton University Math Competition, 6
Take the square with vertices $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. Choose a random point in this square and draw the line segment from it to $(0,0)$. Choose a second random point in this square and draw the line segment from it to $(1,0)$. What is the probability that the two line segments intersect?
2010 Today's Calculation Of Integral, 565
Prove that $ f(x)\equal{}\int_0^1 e^{\minus{}|t\minus{}x|}t(1\minus{}t)dt$ has maximal value at $ x\equal{}\frac 12$.
2005 Harvard-MIT Mathematics Tournament, 1
Let $ f(x) = x^3 + ax + b $, with $ a \ne b $, and suppose the tangent lines to the graph of $f$ at $x=a$ and $x=b$ are parallel. Find $f(1)$.
2010 Today's Calculation Of Integral, 522
Find $ \lim_{a\rightarrow{\infty}} \frac{1}{a^2}\int_0^a \ln (1\plus{}e^x)dx$.
1997 Traian Lălescu, 4
Compute the limit: \[ \lim_{n\to\infty} \frac{1}{n^2}\sum\limits_{1\leq i <j\leq n}\sin \frac{i+j}{n}\].
Today's calculation of integrals, 898
Let $a,\ b$ be positive constants.
Evaluate \[\int_0^1 \frac{\ln \frac{(x+a)^{x+a}}{(x+b)^{x+b}}}{(x+a)(x+b)\ln (x+a)\ln (x+b)}\ dx.\]
2003 USAMO, 5
Let $ a$, $ b$, $ c$ be positive real numbers. Prove that
\[ \dfrac{(2a \plus{} b \plus{} c)^2}{2a^2 \plus{} (b \plus{} c)^2} \plus{} \dfrac{(2b \plus{} c \plus{} a)^2}{2b^2 \plus{} (c \plus{} a)^2} \plus{} \dfrac{(2c \plus{} a \plus{} b)^2}{2c^2 \plus{} (a \plus{} b)^2} \le 8.
\]
2007 Princeton University Math Competition, 3
For how many rational numbers $p$ is the area of the triangle formed by the intercepts and vertex of $f(x) = -x^2+4px-p+1$ an integer?
2021 CMIMC Integration Bee, 9
$$\int_1^2\frac{12x^3+12x+12}{2x^4+3x^2+4x}\,dx$$
[i]Proposed by Connor Gordon[/i]
2013 Stanford Mathematics Tournament, 9
Evaluate $\int_{0}^{\pi/2}\frac{dx}{\left(\sqrt{\sin x}+\sqrt{\cos x}\right)^4}$.
2010 Today's Calculation Of Integral, 525
Let $ a,\ b$ be real numbers satisfying $ \int_0^1 (ax\plus{}b)^2dx\equal{}1$.
Determine the values of $ a,\ b$ for which $ \int_0^1 3x(ax\plus{}b)\ dx$ is maximized.
2012 Today's Calculation Of Integral, 788
For a function $f(x)=\ln (1+\sqrt{1-x^2})-\sqrt{1-x^2}-\ln x\ (0<x<1)$, answer the following questions:
(1) Find $f'(x)$.
(2) Sketch the graph of $y=f(x)$.
(3) Let $P$ be a mobile point on the curve $y=f(x)$ and $Q$ be a point which is on the tangent at $P$ on the curve $y=f(x)$ and such that $PQ=1$. Note that the $x$-coordinate of $Q$ is les than that of $P$. Find the locus of $Q$.
2012 NIMO Problems, 2
For which positive integer $n$ is the quantity $\frac{n}{3} + \frac{40}{n}$ minimized?
[i]Proposed by Eugene Chen[/i]
1962 AMC 12/AHSME, 22
The number $ 121_b$, written in the integral base $ b$, is the square of an integer, for
$ \textbf{(A)}\ b \equal{} 10,\text{ only} \qquad \textbf{(B)}\ b \equal{} 10 \text{ and } b \equal{} 5, \text{ only} \qquad \textbf{(C)}\ 2 \leq b \leq 10 \qquad \textbf{(D)}\ b > 2 \qquad \textbf{(E)}\ \text{no value of }b$
2005 Indonesia MO, 1
Let $ n$ be a positive integer. Determine the number of triangles (non congruent) with integral side lengths and the longest side length is $ n$.
2017 CMI B.Sc. Entrance Exam, 3
Let $p(x)$ be a polynomial of degree strictly less than $100$ and such that it does not have $(x^3-x)$ as a factor. If $$\frac{d^{100}}{dx^{100}}\bigg(\frac{p(x)}{x^3-x}\bigg)=\frac{f(x)}{g(x)}$$ for some polynomials $f(x)$ and $g(x)$ then find the smallest possible degree of $f(x)$.
2018 Miklós Schweitzer, 9
Let $f:\mathbb{C} \to \mathbb{C}$ be an entire function, and suppose that the sequence $f^{(n)}$ of derivatives converges pointwise. Prove that $f^{(n)}(z)\to Ce^z$ pointwise for a suitable complex number $C$.
2006 Grigore Moisil Urziceni, 2
Consider a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that admits primitives. Prove that:
$ \text{(i)} $ Every term (function) of the sequence functions $ \left( h_n\right)_{n\ge 2}:\mathbb{R}\longrightarrow\mathbb{R} $ defined, for any natural number $ n $ as $ h_n(x)=x^nf\left( x^3 \right) , $ is primitivable.
$ \text{(ii)} $ The function $ \phi :\mathbb{R}\longrightarrow\mathbb{R} $ defined as
$$ \phi (x) =\left\{ \begin{matrix} e^{-1/x^2} f(x),& \quad x\neq 0 \\ 0,& \quad x=0 \end{matrix} \right. $$
is primitivable.
[i]Cristinel Mortici[/i]
2010 Today's Calculation Of Integral, 552
Find the positive value of $ a$ such that the curve $ C_1: x \equal{} \sqrt {2y^2 \plus{} \frac {25}{2}}$ tangent to the parabola $ C_2: y \equal{} ax^2$, then find the equation of the tangent line of $ C_1$ at the point of tangency.
PEN H Problems, 46
Let $a, b, c, d, e, f$ be integers such that $b^{2}-4ac>0$ is not a perfect square and $4acf+bde-ae^{2}-cd^{2}-fb^{2}\neq 0$. Let \[f(x, y)=ax^{2}+bxy+cy^{2}+dx+ey+f\] Suppose that $f(x, y)=0$ has an integral solution. Show that $f(x, y)=0$ has infinitely many integral solutions.
2018 ISI Entrance Examination, 4
Let $f:(0,\infty)\to\mathbb{R}$ be a continuous function such that for all $x\in(0,\infty)$, $$f(2x)=f(x)$$
Show that the function $g$ defined by the equation $$g(x)=\int_{x}^{2x} f(t)\frac{dt}{t}~~\text{for}~x>0$$ is a constant function.