This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2009 ISI B.Stat Entrance Exam, 5

A cardboard box in the shape of a rectangular parallelopiped is to be enclosed in a cylindrical container with a hemispherical lid. If the total height of the container from the base to the top of the lid is $60$ centimetres and its base has radius $30$ centimetres, find the volume of the largest box that can be completely enclosed inside the container with the lid on.

2010 Today's Calculation Of Integral, 619

Consider a function $f(x)=\frac{\sin x}{9+16\sin ^ 2 x}\ \left(0\leq x\leq \frac{\pi}{2}\right).$ Let $a$ be the value of $x$ for which $f(x)$ is maximized. Evaluate $\int_a^{\frac{\pi}{2}} f(x)\ dx.$ [i]2010 Saitama University entrance exam/Mathematics[/i] Last Edited

2013 BMT Spring, 10

Tags: limit , calculus
Let the class of functions $f_n$ be defined such that $f_1(x)=|x^3-x^2|$ and $f_{k+1}(x)=|f_k(x)-x^3|$ for all $k\ge1$. Denote by $S_n$ the sum of all $y$-values of $f_n(x)$'s "sharp" points in the First Quadrant. (A "sharp" point is a point for which the derivative is not defined.) Find the ratio of odd to even terms, $$\lim_{k\to\infty}\frac{S_{2k+1}}{S_{2k}}$$

Today's calculation of integrals, 894

Let $a$ be non zero real number. Find the area of the figure enclosed by the line $y=ax$, the curve $y=x\ln (x+1).$

2005 IMC, 4

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function. Prove that there exists $w \in [-1,1]$ such that \[ \frac{f'''(w)}{6} = \frac{f(1)}{2}-\frac{f(-1)}{2}-f'(0). \]

2010 Today's Calculation Of Integral, 608

For $a>0$, find the minimum value of $\int_0^1 \frac{ax^2+(a^2+2a)x+2a^2-2a+4}{(x+a)(x+2)}dx.$ 2010 Gakusyuin University entrance exam/Science

1979 Spain Mathematical Olympiad, 8

Given the polynomial $$P(x) = 1+3x + 5x^2 + 7x^3 + ...+ 1001x^{500}.$$ Express the numerical value of its derivative of order $325$ for $x = 0$.

2010 Today's Calculation Of Integral, 532

For a curve $ C: y \equal{} x\sqrt {9 \minus{} x^2}\ (x\geq 0)$, (1) Find the maximum value of the function. (2) Find the area of the figure bounded by the curve $ C$ and the $ x$-axis. (3) Find the volume of the solid by revolution of the figure in (2) around the $ y$-axis. Please find the volume without using cylindrical shells for my students. Last Edited.

Today's calculation of integrals, 863

For $0<t\leq 1$, let $F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.$ (1) Find $\lim_{t\rightarrow 0} F(t).$ (2) Find the range of $t$ such that $F(t)\geq 1.$

2024 SEEMOUS, P3

For every $n\geq 1$ define $x_n$ by $$x_n=\int_0^1 \ln(1+x+x^2+\dots +x^n)\cdot\ln\frac{1}{1-x}\mathrm dx.$$ a) Show that $x_n$ is finite for every $n\geq 1$ and $\lim_{n\rightarrow\infty}x_n=2$. b) Calculate $\lim_{n\rightarrow\infty}\frac{n}{\ln n}(2-x_n)$.

1979 AMC 12/AHSME, 11

Find a positive integral solution to the equation \[\frac{1+3+5+\dots+(2n-1)}{2+4+6+\dots+2n}=\frac{115}{116}\] $\textbf{(A) }110\qquad\textbf{(B) }115\qquad\textbf{(C) }116\qquad\textbf{(D) }231\qquad\textbf{(E) }\text{The equation has no positive integral solutions.}$

1993 AMC 12/AHSME, 26

Find the largest positive value attained by the function \[ f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48}, \qquad x\ \text{a real number} \] $ \textbf{(A)}\ \sqrt{7}-1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 2\sqrt{3} \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{55}-\sqrt{5} $

2016 Bangladesh Mathematical Olympiad, 9

Consider the integral $Z(0)=\int^{\infty}_{-\infty} dx e^{-x^2}= \sqrt{\pi}$. [b](a)[/b] Show that the integral $Z(j)=\int^{\infty}_{-\infty} dx e^{-x^{2}+jx}$, where $j$ is not a function of $x$, is $Z(j)=e^{j^{2}/4a} Z(0)$. [b](b)[/b] Show that $$\dfrac 1 {Z(0)}=\int x^{2n} e^{-x^2}= \dfrac {(2n-1)!!}{2^n},$$ where $(2n-1)!!$ is defined as $(2n-1)(2n-3)\times\cdots\times3\times 1$. [b](c)[/b] What is the number of ways to form $n$ pairs from $2n$ distinct objects? Interpret the previous part of the problem in term of this answer.

2009 German National Olympiad, 1

Find all non-negative real numbers $a$ such that the equation \[ \sqrt[3]{1+x}+\sqrt[3]{1-x}=a \] has at least one real solution $x$ with $0 \leq x \leq 1$. For all such $a$, what is $x$?

PEN S Problems, 38

The function $\mu: \mathbb{N}\to \mathbb{C}$ is defined by \[\mu(n) = \sum^{}_{k \in R_{n}}\left( \cos \frac{2k\pi}{n}+i \sin \frac{2k\pi}{n}\right),\] where $R_{n}=\{ k \in \mathbb{N}\vert 1 \le k \le n, \gcd(k, n)=1 \}$. Show that $\mu(n)$ is an integer for all positive integer $n$.

2006 Princeton University Math Competition, 5

Find the greatest integer less than the number $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{1000000}}$

1981 Vietnam National Olympiad, 2

Consider the polynomials \[f(p) = p^{12} - p^{11} + 3p^{10} + 11p^3 - p^2 + 23p + 30;\] \[g(p) = p^3 + 2p + m.\] Find all integral values of $m$ for which $f$ is divisible by $g$.

2022 JHMT HS, 5

A point $(X, Y, Z)$ is chosen uniformly at random from the ball of radius $4$ centered at the origin (i.e., the set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 4^2\}$). Compute the probability that the inequalities $X^2 \leq 1$ and $X^2 + Y^2 + Z^2 \geq 1$ simultaneously hold.

1985 Traian Lălescu, 1.2

Is there a real interval $ I $ for which there exists a primitivable function $ f:I\longrightarrow I $ with the property that $ (f\circ f) (x)=-x, $ for all $ x\in I $ ?

2019 District Olympiad, 4

Let $f: [0, \infty) \to [0, \infty)$ be a continuous function with $f(0)>0$ and having the property $$x-y<f(y)-f(x) \le 0~\forall~0 \le x<y.$$ Prove that: $a)$ There exists a unique $\alpha \in (0, \infty)$ such that $(f \circ f)(\alpha)=\alpha.$ $b)$ The sequence $(x_n)_{n \ge 1},$ defined by $x_1 \ge 0$ and $x_{n+1}=f(x_n)~\forall~n \in \mathbb{N}$ is convergent.

2010 Today's Calculation Of Integral, 533

Let $ C$ be the circle with radius 1 centered on the origin. Fix the endpoint of the string with length $ 2\pi$ on the point $ A(1,\ 0)$ and put the other end point $ P$ on the point $ P_0(1,\ 2\pi)$. From this situation, when we twist the string around $ C$ by moving the point $ P$ in anti clockwise with the string streched tightly, find the length of the curve that the point $ P$ draws from sarting point $ P_0$ to reaching point $ A$.

PEN M Problems, 13

The sequence $\{x_{n}\}$ is defined by \[x_{0}\in [0, 1], \; x_{n+1}=1-\vert 1-2 x_{n}\vert.\] Prove that the sequence is periodic if and only if $x_{0}$ is irrational.

2022 CMIMC Integration Bee, 1

\[\int_0^{\pi/1011}\sin^2(2022x)+\cos^2(2022x)\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2021 Science ON grade XII, 1

Find all differentiable functions $f, g:[0,\infty) \to \mathbb{R}$ and the real constant $k\geq 0$ such that \begin{align*} f(x) &=k+ \int_0^x \frac{g(t)}{f(t)}dt \\ g(x) &= -k-\int_0^x f(t)g(t) dt \end{align*} and $f(0)=k, f'(0)=-k^2/3$ and also $f(x)\neq 0$ for all $x\geq 0$.\\ \\ [i] (Nora Gavrea)[/i]

2009 Germany Team Selection Test, 3

Find all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that $ \forall x,y,z \in \mathbb{R}$ we have: If \[ x^3 \plus{} f(y) \cdot x \plus{} f(z) \equal{} 0,\] then \[ f(x)^3 \plus{} y \cdot f(x) \plus{} z \equal{} 0.\]