This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2008 Putnam, B2

Let $ F_0\equal{}\ln x.$ For $ n\ge 0$ and $ x>0,$ let $ \displaystyle F_{n\plus{}1}(x)\equal{}\int_0^xF_n(t)\,dt.$ Evaluate $ \displaystyle\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$

1987 AIME Problems, 11

Find the largest possible value of $k$ for which $3^{11}$ is expressible as the sum of $k$ consecutive positive integers.

1994 China Team Selection Test, 2

Given distinct prime numbers $p$ and $q$ and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x) = x^n + ax^{n-1} + pq$ can be factored into 2 integral polynomials of degree at least 1.

2019 Simon Marais Mathematical Competition, B1

Determine all pairs $(a,b)$ of real numbers with $a\leqslant b$ that maximise the integral $$\int_a^b e^{\cos (x)}(380-x-x^2) \mathrm{d} x.$$

1999 Harvard-MIT Mathematics Tournament, 5

Let $f(x)=x+\cfrac{1}{2x+\cfrac{1}{2x+\cfrac{1}{2x+\cdots}}}$. Find $f(99)f^\prime (99)$.

1996 IMC, 2

Evaluate the definite integral $$\int_{-\pi}^{\pi}\frac{\sin nx}{(1+2^{x})\sin x} dx,$$ where $n$ is a natural number.

2008 Romania National Olympiad, 1

Let $ a>0$ and $ f: [0,\infty) \to [0,a]$ be a continuous function on $ (0,\infty)$ and having Darboux property on $ [0,\infty)$. Prove that if $ f(0)\equal{}0$ and for all nonnegative $ x$ we have \[ xf(x) \geq \int^x_0 f(t) dt ,\] then $ f$ admits primitives on $ [0,\infty)$.

2019 Ramnicean Hope, 2

Calculate $ \int_1^4 \frac{\ln x}{(1+x)(4+x)} dx . $ [i]Ovidiu Țâțan[/i]

2013 India Regional Mathematical Olympiad, 6

Let $n \ge 4$ be a natural number. Let $A_1A_2 \cdots A_n$ be a regular polygon and $X = \{ 1,2,3....,n \} $. A subset $\{ i_1, i_2,\cdots, i_k \} $ of $X$, with $k \ge 3$ and $i_1 < i_2 < \cdots < i_k$, is called a good subset if the angles of the polygon $A_{i_1}A_{i_2}\cdots A_{i_k}$ , when arranged in the increasing order, are in an arithmetic progression. If $n$ is a prime, show that a proper good subset of $X$ contains exactly four elements.

2012 Today's Calculation Of Integral, 820

Let $P_k$ be a point whose $x$-coordinate is $1+\frac{k}{n}\ (k=1,\ 2,\ \cdots,\ n)$ on the curve $y=\ln x$. For $A(1,\ 0)$, find the limit $\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^{n} \overline{AP_k}^2.$

2007 Today's Calculation Of Integral, 207

Evaluate the following definite integral. \[\int_{e^{e}}^{e^{e+1}}\left\{\frac{1}{\ln x \cdot\ln (\ln x)}+\ln (\ln (\ln x))\right\}dx\]

1998 Harvard-MIT Mathematics Tournament, 3

Find the area of the region bounded by the graphs $y=x^2$, $y=x$, and $x=2$.

1982 Vietnam National Olympiad, 1

Determine a quadric polynomial with intergral coefficients whose roots are $\cos 72^{\circ}$ and $\cos 144^{\circ}.$

2018 Korea USCM, 3

$\Phi$ is a function defined on collection of bounded measurable subsets of $\mathbb{R}$ defined as $$\Phi(S) = \iint_S (1-5x^2 + 4xy-5y^2 ) dx dy$$ Find the maximum value of $\Phi$.

1998 Harvard-MIT Mathematics Tournament, 7

A parabola is inscribed in equilateral triangle $ABC$ of side length $1$ in the sense that $AC$ and $BC$ are tangent to the parabola at $A$ and $B$, respectively. Find the area between $AB$ and the parabola.

2005 Georgia Team Selection Test, 3

Let $ x,y,z$ be positive real numbers,satisfying equality $ x^{2}\plus{}y^{2}\plus{}z^{2}\equal{}25$. Find the minimal possible value of the expression $ \frac{xy}{z} \plus{} \frac{yz}{x} \plus{} \frac{zx}{y}$.

2004 USA Team Selection Test, 3

Draw a $2004 \times 2004$ array of points. What is the largest integer $n$ for which it is possible to draw a convex $n$-gon whose vertices are chosen from the points in the array?

1989 IMO Longlists, 4

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. He knows that the sides of the carpet are integral numbers of feet and that his two storerooms have the same (unknown) length, but widths of 38 feet and 50 feet respectively. What are the carpet dimensions?

1983 AIME Problems, 9

Find the minimum value of \[\frac{9x^2 \sin^2 x + 4}{x \sin x}\] for $0 < x < \pi$.

PEN I Problems, 8

Prove that $\lfloor \sqrt[3]{n}+\sqrt[3]{n+1}+\sqrt[3]{n+2}\rfloor =\lfloor \sqrt[3]{27n+26}\rfloor$ for all positive integers $n$.

1999 Harvard-MIT Mathematics Tournament, 8

A circle is randomly chosen in a circle of radius $1$ in the sense that a point is randomly chosen for its center, then a radius is chosen at random so that the new circle is contained in the original circle. What is the probability that the new circle contains the center of the original circle?

PEN D Problems, 13

Let $\Gamma$ consist of all polynomials in $x$ with integer coefficients. For $f$ and $g$ in $\Gamma$ and $m$ a positive integer, let $f \equiv g \pmod{m}$ mean that every coefficient of $f-g$ is an integral multiple of $m$. Let $n$ and $p$ be positive integers with $p$ prime. Given that $f,g,h,r$ and $s$ are in $\Gamma$ with $rf+sg\equiv 1 \pmod{p}$ and $fg \equiv h \pmod{p}$, prove that there exist $F$ and $G$ in $\Gamma$ with $F \equiv f \pmod{p}$, $G \equiv g \pmod{p}$, and $FG \equiv h \pmod{p^n}$.

2012 Today's Calculation Of Integral, 777

Given two points $P,\ Q$ on the parabola $C: y=x^2-x-2$ in the $xy$ plane. Note that the $x$ coodinate of $P$ is less than that of $Q$. (a) If the origin $O$ is the midpoint of the lines egment $PQ$, then find the equation of the line $PQ$. (b) If the origin $O$ divides internally the line segment $PQ$ by 2:1, then find the equation of $PQ$. (c) If the origin $O$ divides internally the line segment $PQ$ by 2:1, find the area of the figure bounded by the parabola $C$ and the line $PQ$.

2005 IMO Shortlist, 3

Four real numbers $ p$, $ q$, $ r$, $ s$ satisfy $ p+q+r+s = 9$ and $ p^{2}+q^{2}+r^{2}+s^{2}= 21$. Prove that there exists a permutation $ \left(a,b,c,d\right)$ of $ \left(p,q,r,s\right)$ such that $ ab-cd \geq 2$.

1998 Hungary-Israel Binational, 3

Let $ a, b, c, m, n$ be positive integers. Consider the trinomial $ f (x) = ax^{2}+bx+c$. Show that there exist $ n$ consecutive natural numbers $ a_{1}, a_{2}, . . . , a_{n}$ such that each of the numbers $ f (a_{1}), f (a_{2}), . . . , f (a_{n})$ has at least $ m$ different prime factors.