This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2005 Today's Calculation Of Integral, 56

Evaluate \[\lim_{n\to\infty} \sum_{k=1}^n \frac{[\sqrt{2n^2-k^2}\ ]}{n^2}\] $[x]$ is the greatest integer $\leq x$.

Today's calculation of integrals, 890

A function $f_n(x)\ (n=1,\ 2,\ \cdots)$ is defined by $f_1(x)=x$ and \[f_n(x)=x+\frac{e}{2}\int_0^1 f_{n-1}(t)e^{x-t}dt\ (n=2,\ 3,\ \cdots)\]. Find $f_n(x)$.

2007 Today's Calculation Of Integral, 203

Let $\alpha ,\ \beta$ be the distinct positive roots of the equation of $2x=\tan x$. Evaluate the following definite integral. \[\int_{0}^{1}\sin \alpha x\sin \beta x\ dx \]

2011 Today's Calculation Of Integral, 747

Prove that $\int_0^4 \left(1-\cos \frac{x}{2}\right)e^{\sqrt{x}}dx\leq -2e^2+30.$

2008 ISI B.Math Entrance Exam, 1

Let $f:\mathbb{R} \to \mathbb{R}$ be a continuous function . Suppose \[f(x)=\frac{1}{t} \int^t_0 (f(x+y)-f(y))\,dy\] $\forall x\in \mathbb{R}$ and all $t>0$ . Then show that there exists a constant $c$ such that $f(x)=cx\ \forall x$

2012 ISI Entrance Examination, 2

Consider the following function \[g(x)=(\alpha+|x|)^{2}e^{(5-|x|)^{2}}\] [b]i)[/b] Find all the values of $\alpha$ for which $g(x)$ is continuous for all $x\in\mathbb{R}$ [b]ii)[/b]Find all the values of $\alpha$ for which $g(x)$ is differentiable for all $x\in\mathbb{R}$.

2011 Today's Calculation Of Integral, 737

Let $a,\ b$ real numbers such that $a>1,\ b>1.$ Prove the following inequality. \[\int_{-1}^1 \left(\frac{1+b^{|x|}}{1+a^{x}}+\frac{1+a^{|x|}}{1+b^{x}}\right)\ dx<a+b+2\]

2012 Today's Calculation Of Integral, 848

Evaluate $\int_0^{\frac {\pi}{4}} \frac {\sin \theta -2\ln \frac{1-\sin \theta}{\cos \theta}}{(1+\cos 2\theta)\sqrt{\ln \frac{1+\sin \theta}{\cos \theta}}}d\theta .$

2009 Today's Calculation Of Integral, 463

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{e^{\frac{1}{\cos ^ 2 x}}\sin x}{\cos ^ 3 x}\ dx$.

2010 Today's Calculation Of Integral, 568

Throw $ n$ balls in to $ 2n$ boxes. Suppose each ball comes into each box with equal probability of entering in any boxes. Let $ p_n$ be the probability such that any box has ball less than or equal to one. Find the limit $ \lim_{n\to\infty} \frac{\ln p_n}{n}$

2012 Today's Calculation Of Integral, 810

Given the functions $f(x)=xe^{x}+2x\int_0^2 |g(t)|dt-1,\ g(x)=x^2-x\int_0^1 f(t)dt$, evaluate $\int_0^2 |g(t)|dt.$

2005 Today's Calculation Of Integral, 75

A function $f(\theta)$ satisfies the following conditions $(a),(b)$. $(a)\ f(\theta)\geq 0$ $(b)\ \int_0^{\pi} f(\theta)\sin \theta d\theta =1$ Prove the following inequality. \[\int_0^{\pi} f(\theta)\sin n\theta \ d\theta \leq n\ (n=1,2,\cdots)\]

2011 Today's Calculation Of Integral, 724

Find $\lim_{n\to\infty}\left\{\left(1+n\right)^{\frac{1}{n}}\left(1+\frac{n}{2}\right)^{\frac{2}{n}}\left(1+\frac{n}{3}\right)^{\frac{3}{n}}\cdots\cdots 2\right\}^{\frac{1}{n}}$.

2012 Today's Calculation Of Integral, 827

Find $\lim_{n\to\infty}\sum_{k=0}^{\infty} \int_{2k\pi}^{(2k+1)\pi} xe^{-x}\sin x\ dx.$

2005 Today's Calculation Of Integral, 67

Evaluate \[\frac{2005\displaystyle \int_0^{1002}\frac{dx}{\sqrt{1002^2-x^2}+\sqrt{1003^2-x^2}}+\int_{1002}^{1003}\sqrt{1003^2-x^2}dx}{\displaystyle \int_0^1\sqrt{1-x^2}dx}\]

2007 Today's Calculation Of Integral, 170

Let $a,\ b$ be constant numbers such that $a^{2}\geq b.$ Find the following definite integrals. (1) $I=\int \frac{dx}{x^{2}+2ax+b}$ (2) $J=\int \frac{dx}{(x^{2}+2ax+b)^{2}}$

2005 Today's Calculation Of Integral, 53

Find the maximum value of the following integral. \[\int_0^{\infty} e^{-x}\sin tx\ dx\]

2007 Today's Calculation Of Integral, 218

For any quadratic functions $ f(x)$ such that $ f'(2)\equal{}1$, evaluate $ \int_{2\minus{}\pi}^{2\plus{}\pi}f(x)\sin\left(\frac{x}{2}\minus{}1\right) dx$.

2010 Today's Calculation Of Integral, 604

Let $r$ be a positive integer. Determine the value of $a$ for which the limit value $\lim_{n\to\infty} \frac{\sum_{k=1}^n k^r}{n^a} $ has a non zero finite value, then find the limit value. 1956 Tokyo Institute of Technology entrance exam

2010 Today's Calculation Of Integral, 634

Prove that : \[\int_1^{\sqrt{e}} (\ln x)^n dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^m\ (n=1,\ 2,\ \cdots)\] [i]2010 Miyazaki University entrance exam/Medicine[/i]

2009 Today's Calculation Of Integral, 427

Let $ a$ be a positive real number, in Euclidean space, consider the two disks: $ D_1\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}a\}$, $ D_2\equal{}\{(x,\ y,\ z)| x^2\plus{}y^2\leq 1,\ z\equal{}\minus{}a\}$. Let $ D_1$ overlap to $ D_2$ by rotating $ D_1$ about the $ y$ axis by $ 180^\circ$. Note that the rotational direction is supposed to be the direction such that we would lean the postive part of the $ z$ axis to into the direction of the postive part of $ x$ axis. Let denote $ E$ the part in which $ D_1$ passes while the rotation, let denote $ V(a)$ the volume of $ E$ and let $ W(a)$ be the volume of common part of $ E$ and $ \{(x,\ y,\ z)|x\geq 0\}$. (1) Find $ W(a)$. (2) Find $ \lim_{a\rightarrow \infty} V(a)$.

2007 Today's Calculation Of Integral, 211

When the parabola which has the axis parallel to $y$ -axis and passes through the origin touch to the rectangular hyperbola $xy=1$ in the first quadrant moves, prove that the area of the figure sorrounded by the parabola and the $x$-axis is constant.

2012 Today's Calculation Of Integral, 824

In the $xy$-plane, for $a>1$ denote by $S(a)$ the area of the figure bounded by the curve $y=(a-x)\ln x$ and the $x$-axis. Find the value of integer $n$ for which $\lim_{a\rightarrow \infty} \frac{S(a)}{a^n\ln a}$ is non-zero real number.

2009 Today's Calculation Of Integral, 496

Evaluate $ \int_{ \minus{} 1}^ {a^2} \frac {1}{x^2 \plus{} a^2}\ dx\ (a > 0).$ You may not use $ \tan ^{ \minus{} 1} x$ or Complex Integral here.

2007 Today's Calculation Of Integral, 235

Show that a function $ f(x)\equal{}\int_{\minus{}1}^1 (1\minus{}|\ t\ |)\cos (xt)\ dt$ is continuous at $ x\equal{}0$.