This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2018 Azerbaijan Junior NMO, 4

A circle $\omega$ and a point $T$ outside the circle is given. Let a tangent from $T$ to $\omega$ touch $\omega$ at $A$, and take points $B,C$ lying on $\omega$ such that $T,B,C$ are colinear. The bisector of $\angle ATC$ intersects $AB$ and $AC$ at $P$ and $Q$,respectively. Prove that $PA=\sqrt{PB\cdot QC}$

2007 Oral Moscow Geometry Olympiad, 2

Two circles intersect at points $P$ and $Q$. Point $A$ lies on the first circle, but outside the second. Lines $AP$ and $AQ$ intersect the second circle at points $B$ and $C$, respectively. Indicate the position of point $A$ at which triangle $ABC$ has the largest area. (D. Prokopenko)

2010 Balkan MO Shortlist, G2

Consider a cyclic quadrilateral such that the midpoints of its sides form another cyclic quadrilateral. Prove that the area of the smaller circle is less than or equal to half the area of the bigger circle

2012 Peru MO (ONEM), 4

In a circle $S$, a chord $AB$ is drawn and let $M$ be the midpoint of the arc $AB$. Let $P$ be a point in segment $AB$ other than its midpoint. The extension of the segment $MP$ cuts $S$ in $Q$. Let $S_1$ be the circle that is tangent to the AP segments and $MP$, and also is tangent to $S$, and let $S_2$ be the circle that is tangent to the segments $BP$ and $MP$, and also tangent to $S$. The common outer tangent lines to the circles $S_1$ and $S_2$ are cut at $C$. Prove that $\angle MQC = 90^o$.

2021 Malaysia IMONST 2, 1

Tags: geometry , circles , angle
Given a circle with center $O$. Points $A$ and $B$ lie on the circle such that triangle $OBA$ is equilateral. Let $C$ be a point outside the circle with $\angle ACB = 45^{\circ}$. Line $CA$ intersects the circle at point $D$, and the line $CB$ intersects the circle at point $E$. Find $\angle DBE$.

2018 Denmark MO - Mohr Contest, 2

Tags: geometry , area , circles
The figure shows a large circle with radius $2$ m and four small circles with radii $1$ m. It is to be painted using the three shown colours. What is the cost of painting the figure? [img]https://1.bp.blogspot.com/-oWnh8uhyTIo/XzP30gZueKI/AAAAAAAAMUY/GlC3puNU_6g6YRf6hPpbQW8IE8IqMP3ugCLcBGAsYHQ/s0/2018%2BMohr%2Bp2.png[/img]

2016 Vietnam Team Selection Test, 3

Let $ABC$ be triangle with circumcircle $(O)$ of fixed $BC$, $AB \ne AC$ and $BC$ not a diameter. Let $I$ be the incenter of the triangle $ABC$ and $D = AI \cap BC, E = BI \cap CA, F = CI \cap AB$. The circle passing through $D$ and tangent to $OA$ cuts for second time $(O)$ at $G$ ($G \ne A$). $GE, GF$ cut $(O)$ also at $M, N$ respectively. a) Let $H = BM \cap CN$. Prove that $AH$ goes through a fixed point. b) Suppose $BE, CF$ cut $(O)$ also at $L, K$ respectively and $AH \cap KL = P$. On $EF$ take $Q$ for $QP = QI$. Let $J$ be a point of the circimcircle of triangle $IBC$ so that $IJ \perp IQ$. Prove that the midpoint of $IJ$ belongs to a fixed circle.

2013 Bosnia And Herzegovina - Regional Olympiad, 2

Tags: chord , circles , geometry
In circle with radius $10$, point $M$ is on chord $PQ$ such that $PM=5$ and $MQ=10$. Through point $M$ we draw chords $AB$ and $CD$, and points $X$ and $Y$ are intersection points of chords $AD$ and $BC$ with chord $PQ$ (see picture), respectively. If $XM=3$ find $MY$ [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYy9kLzBiMmFmM2ViOGVmOTlmZDA5NGY2ZWY4MjM1YWI0ZDZjNjJlNzA1LnBuZw==&rn=Z2VvbWV0cmlqYS5wbmc=[/img]

2024 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute scalene triangle. Choose a circle $\omega$ passing through $B$ and $C$ which intersects the segments $AB$ and $AC$ at the interior points $D$ and $E$, respectively. The lines $BE$ and $CD$ intersects at $F$. Let $G$ be a point on the circumcircle of $ABF$ such that $GB$ is tangent to $\omega$ and let $H$ be a point on the circumcircle of $ACF$ such that $HC$ is tangent to $\omega$. Prove that there exists a point $T\neq A$, independent of the choice of $\omega$, such that the circumcircle of triangle $AGH$ passes through $T$.

1955 Moscow Mathematical Olympiad, 308

* Two circles are tangent to each other externally, and to a third one from the inside. Two common tangents to the first two circles are drawn, one outer and one inner. Prove that the inner tangent divides in halves the arc intercepted by the outer tangent on the third circle.

2002 Junior Balkan Team Selection Tests - Romania, 3

Let $C_1(O_1)$ and $ C_2(O_2)$ be two circles such that $C_1$ passes through $O_2$. Point $M$ lies on $C_1$ such that $M \notin O_1O_2$. The tangents from $M$ at $O_2$ meet again $C_1$ at $A$ and $B$. Prove that the tangents from $A$ and $B$ at $C_2$ - others than $MA$ and $MB$ - meet at a point located on $C_1$.

1995 Denmark MO - Mohr Contest, 5

In the plane, six circles are given so that none of the circles contain one the center of the other. Show that there is no point that lies in all the circles.

1982 IMO Longlists, 25

Four distinct circles $C,C_1, C_2$, C3 and a line L are given in the plane such that $C$ and $L$ are disjoint and each of the circles $C_1, C_2, C_3$ touches the other two, as well as $C$ and $L$. Assuming the radius of $C$ to be $1$, determine the distance between its center and $L.$

2018 AMC 8, 15

Tags: circles , geometry
In the diagram below, a diameter of each of the two smaller circles is a radius of the larger circle. If the two smaller circles have a combined area of $1$ square unit, then what is the area of the shaded region, in square units? [asy] size(4cm); filldraw(scale(2)*unitcircle,gray,black); filldraw(shift(-1,0)*unitcircle,white,black); filldraw(shift(1,0)*unitcircle,white,black); [/asy] $\textbf{(A) } \frac{1}{4} \qquad \textbf{(B) } \frac{1}{3} \qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) } 1 \qquad \textbf{(E) } \frac{\pi}{2}$

1998 Estonia National Olympiad, 5

A circle is divided into $n$ equal arcs by $n$ points. Assume that, no matter how we color the $n$ points in two colors, there always exists an axis of symmetry of the set of points such that any two of the $n$ points which are symmetric with respect to that axis have the same color. Find all possible values of $n$.

1977 IMO Shortlist, 4

Describe all closed bounded figures $\Phi$ in the plane any two points of which are connectable by a semicircle lying in $\Phi$.

1985 Tournament Of Towns, (094) 2

The radius $OM$ of a circle rotates uniformly at a rate of $360/n$ degrees per second , where $n$ is a positive integer . The initial radius is $OM_0$. After $1$ second the radius is $OM_1$ , after two more seconds (i.e. after three seconds altogether) the radius is $OM_2$ , after $3$ more seconds (after $6$ seconds altogether) the radius is $OM_3$, ..., after $n - 1$ more seconds its position is $OM_{n-1}$. For which values of $n$ do the points $M_0, M_1 , ..., M_{n-1}$ divide the circle into $n$ equal arcs? (a) Is it true that the powers of $2$ are such values? (b) Does there exist such a value which is not a power of $2$? (V. V. Proizvolov , Moscow)

1999 Harvard-MIT Mathematics Tournament, 11

Tags: geometry , hmmt , angle , circles
Circles $C_1$, $C_2$, $C_3$ have radius $ 1$ and centers $O, P, Q$ respectively. $C_1$ and $C_2$ intersect at $A$, $C_2$ and $C_3$ intersect at $B$, $C_3$ and $C_1$ intersect at $C$, in such a way that $\angle APB = 60^o$ , $\angle BQC = 36^o$ , and $\angle COA = 72^o$ . Find angle $\angle ABC$ (degrees).

1986 ITAMO, 1

Two circles $\alpha$ and $\beta$ intersect at points $P$ and $Q$. The lines connecting a point $R$ on $\beta$ with $P$ and $Q$ intersect $\alpha$ again at $S$ and $T$ respectively. Prove that $ST$ is parallel to the line tangent to $\beta$ at $R$.

2011 Dutch IMO TST, 3

The circles $\Gamma_1$ and $\Gamma_2$ intersect at $D$ and $P$. The common tangent line of the two circles closest to point $D$ touches $\Gamma_1$ in A and $\Gamma_2$ in $B$. The line $AD$ intersects $\Gamma_2$ for the second time in $C$. Let $M$ be the midpoint of line segment $BC$. Prove that $\angle DPM = \angle BDC$.

2024 Kosovo Team Selection Test, P2

Let $\omega$ be a circle and let $A$ be a point lying outside of $\omega$. The tangents from $A$ to $\omega$ touch $\omega$ at points $B$ and $C$. Let $M$ be the midpoint of $BC$ and let $D$ a point on the side $BC$ different from $M$. The circle with diameter $AD$ intersects $\omega$ at points $X$ and $Y$ and the circumcircle of $\bigtriangleup ABC$ again at $E$. Prove that $AD$, $EM$, and $XY$ are concurrent.

2014 Greece JBMO TST, 2

Let $ABCD$ be an inscribed quadrilateral in a circle $c(O,R)$ (of circle $O$ and radius $R$). With centers the vertices $A,B,C,D$, we consider the circles $C_{A},C_{B},C_{C},C_{D}$ respectively, that do not intersect to each other . Circle $C_{A}$ intersects the sides of the quadrilateral at points $A_{1} , A_{2}$ , circle $C_{B}$ intersects the sides of the quadrilateral at points $B_{1} , B_{2}$ , circle $C_{C}$ at points $C_{1} , C_{2}$ and circle $C_{D}$ at points $C_{1} , C_{2}$ . Prove that the quadrilateral defined by lines $A_{1}A_{2} , B_{1}B_{2} , C_{1}C_{2} , D_{1}D_{2}$ is cyclic.

Kvant 2020, M2600

Let $ABCD$ be an inscribed quadrilateral. Let the circles with diameters $AB$ and $CD$ intersect at two points $X_1$ and $Y_1$, the circles with diameters $BC$ and $AD$ intersect at two points $X_2$ and $Y_2$, the circles with diameters $AC$ and $BD$ intersect at two points $X_3$ and $Y_3$. Prove that the lines $X_1Y_1, X_2Y_2$ and $X_3Y_3$ are concurrent. Maxim Didin

2016 Regional Olympiad of Mexico Center Zone, 4

Let $A$ be one of the two points where the circles whose centers are the points $M$ and $N$ intersect. The tangents in $A$ to such circles intersect them again in $B$ and $C$, respectively. Let $P$ be a point such that the quadrilateral $AMPN$ is a parallelogram. Show that $P$ is the circumcenter of triangle $ABC$.

2015 Sharygin Geometry Olympiad, 3

Let $100$ discs lie on the plane in such a way that each two of them have a common point. Prove that there exists a point lying inside at least $15$ of these discs. (M. Kharitonov, A. Polyansky)