This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2004 Estonia National Olympiad, 5

Three different circles of equal radii intersect in point $Q$. The circle $C$ touches all of them. Prove that $Q$ is the center of $C$.

2011 Sharygin Geometry Olympiad, 7

Point $O$ is the circumcenter of acute-angled triangle $ABC$, points $A_1,B_1, C_1$ are the bases of its altitudes. Points $A', B', C'$ lying on lines $OA_1, OB_1, OC_1$ respectively are such that quadrilaterals $AOBC', BOCA', COAB'$ are cyclic. Prove that the circumcircles of triangles $AA_1A', BB_1B', CC_1C'$ have a common point.

2020 Ukrainian Geometry Olympiad - April, 3

The circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$, point $M$ is the midpoint of $AB$. On line $AB$ select points $S_1$ and $S_2$. Let $S_1X_1$ and $S_1Y_1$ be tangents drawn from $S_1$ to circle $\omega_1$, similarly $S_2X_2$ and $S_2Y_2$ are tangents drawn from $S_2$ to circles $\omega_2$. Prove that if the point $M$ lies on the line $X_1X_2$, then it also lies on the line $Y_1Y_2$.

Denmark (Mohr) - geometry, 2012.1

Tags: geometry , circles , area
Inside a circle with radius $6$ lie four smaller circles with centres $A,B,C$ and $D$. The circles touch each other as shown. The point where the circles with centres $A$ and $C$ touch each other is the centre of the big circle. Calculate the area of quadrilateral $ABCD$. [img]https://1.bp.blogspot.com/-FFsiOOdcjao/XzT_oJYuQAI/AAAAAAAAMVk/PpyUNpDBeEIESMsiElbexKOFMoCXRVaZwCLcBGAsYHQ/s0/2012%2BMohr%2Bp1.png[/img]

1984 IMO Longlists, 50

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

2015 Singapore Senior Math Olympiad, 5

Let $A$ be a point on the circle $\omega$ centred at $B$ and $\Gamma$ a circle centred at $A$. For $i=1,2,3$, a chord $P_iQ_i$ of $\omega$ is tangent to $\Gamma$ at $S_i$ and another chord $P_iR_i$ of $\omega$ is perpendicular to $AB$ at $M_i$. Let $Q_iT_i$ be the other tangent from $Q_i$ to $\Gamma$ at $T_i$ and $N_i$ be the intersection of $AQ_i$ with $M_iT_i$. Prove that $N_1,N_2,N_3$ are collinear.

2024 German National Olympiad, 5

Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.

2017 Korea Winter Program Practice Test, 1

Tags: circles , geometry
Let $\gamma_1, \gamma_2, \gamma_3$ be mutually externally tangent circles and $\Gamma_1, \Gamma_2, \Gamma_3$ also be mutually externally tangent circles. For each $1 \le i \le 3$, $\gamma_i$ and $\Gamma_{i+1}$ are externally tangent at $A_i$, $\gamma_i$ and $\Gamma_{i+2}$ are externally tangent at $B_i$, and $\gamma_i$ and $\Gamma_i$ do not meet. Show that the six points $A_1, A_2, A_3, B_1, B_2, B_3$ lie on either a line or a circle.

Kyiv City MO Seniors Round2 2010+ geometry, 2017.10.3

Circles $w_1$ and $w_2$ with centers at points $O_1$ and $O_2$ respectively, intersect at points $A$ and $B$. A line passing through point $B$, intersects the circles $w_1$ and $w_2$ at points $C$ and $D$ other than $B$. Tangents to the circles $w_1$ and $w_2$ at points $C$ and $D$ intersect at point $E$. Line $EA$ intersects the circumscribed circle $w$ of triangle $AO_1O_2$ at point $F$. Prove that the length of the segment is $EF$ is equal to the diameter of the circle $w$. (Vovchenko V., Plotnikov M.)

Geometry Mathley 2011-12, 5.1

Let $a, b$ be two lines intersecting each other at $O$. Point $M$ is not on either $a$ or $b$. A variable circle $(C)$ passes through $O,M$ intersecting $a, b$ at $A,B$ respectively, distinct from $O$. Prove that the midpoint of $AB$ is on a fixed line. Hạ Vũ Anh

Kyiv City MO Seniors 2003+ geometry, 2013.10.4

The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $. (Igor Nagel)

2020/2021 Tournament of Towns, P3

Tags: geometry , circles
Let $M{}$ be the midpoint of the side $BC$ of the triangle $ABC$. The circle $\omega$ passes through $A{}$, touches the line $BC$ at $M{}$, intersects the side $AB$ at the point $D{}$ and the side $AC$ at the point $E{}$. Let $X{}$ and $Y{}$ be the midpoints of $BE$ and $CD$ respectively. Prove that the circumcircle of the triangle $MXY$ touches $\omega$. [i]Alexey Doledenok[/i]

2020 Indonesia MO, 1

Since this is already 3 PM (GMT +7) in Jakarta, might as well post the problem here. Problem 1. Given an acute triangle $ABC$ and the point $D$ on segment $BC$. Circle $c_1$ passes through $A, D$ and its centre lies on $AC$. Whereas circle $c_2$ passes through $A, D$ and its centre lies on $AB$. Let $P \neq A$ be the intersection of $c_1$ with $AB$ and $Q \neq A$ be the intersection of $c_2$ with $AC$. Prove that $AD$ bisects $\angle{PDQ}$.

1984 Swedish Mathematical Competition, 1

Let $A$ and $B$ be two points inside a circle $C$. Show that there exists a circle that contains $A$ and $B$ and lies completely inside $C$.

1985 IMO Longlists, 34

A circle whose center is on the side $ED$ of the cyclic quadrilateral $BCDE$ touches the other three sides. Prove that $EB+CD = ED.$

Estonia Open Senior - geometry, 1998.2.1

Tags: circles , geometry , area
Circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively lie on a plane such that that the circle $C_2$ passes through $O_1$. The ratio of radius of circle $C_1$ to $O_1O_2$ is $\sqrt{2+\sqrt3}$. a) Prove that the circles $C_1$ and $C_2$ intersect at two distinct points. b) Let $A,B$ be these points of intersection. What proportion of the area of circle is $C_1$ is the area of the sector $AO_1B$ ?

2006 Sharygin Geometry Olympiad, 17

In two circles intersecting at points $A$ and $B$, parallel chords $A_1B_1$ and $A_2B_2$ are drawn. The lines $AA_1$ and $BB_2$ intersect at the point $X, AA_2$ and $BB_1$ intersect at the point $Y$. Prove that $XY // A_1B_1$.

2009 Sharygin Geometry Olympiad, 7

Given two intersecting circles with centers $O_1, O_2$. Construct the circle touching one of them externally and the second one internally such that the distance from its center to $O_1O_2$ is maximal. (M.Volchkevich)

2020 Tournament Of Towns, 5

Let $ABCD$ be an inscribed quadrilateral. Let the circles with diameters $AB$ and $CD$ intersect at two points $X_1$ and $Y_1$, the circles with diameters $BC$ and $AD$ intersect at two points $X_2$ and $Y_2$, the circles with diameters $AC$ and $BD$ intersect at two points $X_3$ and $Y_3$. Prove that the lines $X_1Y_1, X_2Y_2$ and $X_3Y_3$ are concurrent. Maxim Didin

Kyiv City MO Juniors 2003+ geometry, 2013.8.5

Let $ABCD$ be a convex quadrilateral. Prove that the circles inscribed in the triangles $ABC$, $BCD$, $CDA$ and $DAB$ have a common point if and only if $ABCD$ is a rhombus.

1987 Austrian-Polish Competition, 8

A circle of perimeter $1$ has been dissected into four equal arcs $B_1, B_2, B_3, B_4$. A closed smooth non-selfintersecting curve $C$ has been composed of translates of these arcs (each $B_j$ possibly occurring several times). Prove that the length of $C$ is an integer.

2004 IMO Shortlist, 2

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2016 Bundeswettbewerb Mathematik, 3

Let $A,B,C$ and $D$ be points on a circle in this order. The chords $AC$ and $BD$ intersect in point $P$. The perpendicular to $AC$ through C and the perpendicular to $BD$ through $D$ intersect in point $Q$. Prove that the lines $AB$ and $PQ$ are perpendicular.

Kyiv City MO Seniors 2003+ geometry, 2014.11.4.1.

Construct for the triangle $ABC$ a circle $S$ passing through the point $B$ and touching the line $CA$ at the point $A$, a circle $T$ passing through the point $C$ and touches the line $BA$ at the point $A$. The second intersection point of the circles $S$ and $T$ is denoted by $D$. The intersection point of the line $AD$ and the circumscribed circle $\Delta ABC$ is denoted by $E$. Prove that $D$ is the midpoint of the segment $AE$.

Mathley 2014-15, 5

Tags: geometry , circles , cyclic
A quadrilateral $ABCD$ is inscribed in a circle $(O)$. Another circle $(I)$ is tangent to the diagonals $AC, BD$ at $M, N$ respectively. Suppose that $MN$ meets $AB,CD$ at $P, Q$ respectively. The circumcircle of triangle $IMN$ meets the circumcircles of $IAB, ICD$ at $K, L$ respectively, which are distinct from $I$. Prove that the lines $PK, QL$, and $OI$ are concurrent. Tran Minh Ngoc, a student of Ho Chi Minh City College, Ho Chi Minh