This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1985 Spain Mathematical Olympiad, 5

Find the equation of the circle in the complex plane determined by the roots of the equation $z^3 +(-1+i)z^2+(1-i)z+i= 0$.

2007 Cono Sur Olympiad, 3

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ where $D$, $E$, $F$ lie on $BC$, $AC$, $AB$, respectively. Let $M$ be the midpoint of $BC$. The circumcircle of triangle $AEF$ cuts the line $AM$ at $A$ and $X$. The line $AM$ cuts the line $CF$ at $Y$. Let $Z$ be the point of intersection of $AD$ and $BX$. Show that the lines $YZ$ and $BC$ are parallel.

2016 Stars of Mathematics, 3

Let $ ABC $ be a triangle, $ M_A $ be the midpoint of the side $ BC, $ and $ P_A $ be the orthogonal projection of $ A $ on $ BC. $ Similarly, define $ M_B,M_C,P_B,P_C. M_BM_C $ intersects $ P_BP_C $ at $ S_A, $ and the tangent of the circumcircle of $ ABC $ at $ A $ meets $ BC $ at $ T_A. $ Similarly, define $ S_B,S_C,T_B,T_C. $ Show that the perpendiculars through $ A,B,C, $ to $ S_AT_A,S_BT_B, $ respectively, $ S_CT_C, $ are concurent. [i]Flavian Georgescu[/i]

2010 Balkan MO, 2

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

2022 Vietnam TST, 3

Let $ABCD$ be a parallelogram, $AC$ intersects $BD$ at $I$. Consider point $G$ inside $\triangle ABC$ that satisfy $\angle IAG=\angle IBG\neq 45^{\circ}-\frac{\angle AIB}{4}$. Let $E,G$ be projections of $C$ on $AG$ and $D$ on $BG$. The $E-$ median line of $\triangle BEF$ and $F-$ median line of $\triangle AEF$ intersects at $H$. $a)$ Prove that $AF,BE$ and $IH$ concurrent. Call the concurrent point $L$. $b)$ Let $K$ be the intersection of $CE$ and $DF$. Let $J$ circumcenter of $(LAB)$ and $M,N$ are respectively be circumcenters of $(EIJ)$ and $(FIJ)$. Prove that $EM,FN$ and the line go through circumcenters of $(GAB),(KCD)$ are concurrent.

2024 Polish MO Finals, 6

Let $ABCD$ be a parallelogram. Let $X \notin AC $ lie inside $ABCD$ so that $\angle AXB = \angle CXD = 90^ {\circ}$ and $\Omega$ denote the circumcircle of $AXC$. Consider a diameter $EF$ of $\Omega$ and assume neither $E, \ X, \ B$ nor $F, \ X, \ D$ are collinear. Let $K \neq X$ be an intersection point of circumcircles of $BXE$ and $DXF$ and $L \neq X$ be such point on $\Omega$ so that $\angle KXL = 90^{\circ}$. Prove that $AB = KL$.

2017 Vietnamese Southern Summer School contest, Problem 3

Let $ABC$ be a triangle with right angle $ACB$. Denote by $F$ the projection of $C$ on $AB$. A circle $\omega$ touches $FB$ at point $P$, touches $CF$ at point $Q$, and the circumcircle of $ABC$ at point $R$. Prove that the points $A, Q, R$ all lie on the same line and $AP=AC$.

2008 Balkan MO Shortlist, G7

In the non-isosceles triangle $ABC$ consider the points $X$ on $[AB]$ and $Y$ on $[AC]$ such that $[BX]=[CY]$, $M$ and $N$ are the midpoints of the segments $[BC]$, respectively $[XY]$, and the straight lines $XY$ and $BC$ meet in $K$. Prove that the circumcircle of triangle $KMN$ contains a point, different from $M$ , which is independent of the position of the points $X$ and $Y$.

2014 Junior Balkan MO, 2

Consider an acute triangle $ABC$ of area $S$. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by $H_1$ and $H_2$ the orthocentres of the triangles $MNC$, respectively $MND$. Find the area of the quadrilateral $AH_1BH_2$ in terms of $S$.

2013 China National Olympiad, 1

Two circles $K_1$ and $K_2$ of different radii intersect at two points $A$ and $B$, let $C$ and $D$ be two points on $K_1$ and $K_2$, respectively, such that $A$ is the midpoint of the segment $CD$. The extension of $DB$ meets $K_1$ at another point $E$, the extension of $CB$ meets $K_2$ at another point $F$. Let $l_1$ and $l_2$ be the perpendicular bisectors of $CD$ and $EF$, respectively. i) Show that $l_1$ and $l_2$ have a unique common point (denoted by $P$). ii) Prove that the lengths of $CA$, $AP$ and $PE$ are the side lengths of a right triangle.

2011 Serbia National Math Olympiad, 1

On sides $AB, AC, BC$ are points $M, X, Y$, respectively, such that $AX=MX$; $BY=MY$. $K$, $L$ are midpoints of $AY$ and $BX$. $O$ is circumcenter of $ABC$, $O_1$, $O_2$ are symmetric with $O$ with respect to $K$ and $L$. Prove that $X, Y, O_1, O_2$ are concyclic.

2021-IMOC, G11

The incircle of $\triangle ABC$ tangents $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. The projections of $B$, $C$ to $AD$ are $U$, $V$, respectively; the projections of $C$, $A$ to $BE$ are $W$, $X$, respectively; and the projections of $A$, $B$ to $CF$ are $Y$, $Z$, respectively. Show that the circumcircle of the triangle formed by $UX$, $VY$, $WZ$ is tangent to the incircle of $\triangle ABC$.

2008 Bulgaria National Olympiad, 1

Let $ ABC$ be an acute triangle and $ CL$ be the angle bisector of $ \angle ACB$. The point $ P$ lies on the segment $CL$ such that $ \angle APB\equal{}\pi\minus{}\frac{_1}{^2}\angle ACB$. Let $ k_1$ and $ k_2$ be the circumcircles of the triangles $ APC$ and $ BPC$. $ BP\cap k_1\equal{}Q, AP\cap k_2\equal{}R$. The tangents to $ k_1$ at $ Q$ and $ k_2$ at $ B$ intersect at $ S$ and the tangents to $ k_1$ at $ A$ and $ k_2$ at $ R$ intersect at $ T$. Prove that $ AS\equal{}BT.$

Cono Sur Shortlist - geometry, 2012.G4.2

2. In a square $ABCD$, let $P$ be a point in the side $CD$, different from $C$ and $D$. In the triangle $ABP$, the altitudes $AQ$ and $BR$ are drawn, and let $S$ be the intersection point of lines $CQ$ and $DR$. Show that $\angle ASB=90$.

Cono Sur Shortlist - geometry, 2012.G1

Let $ABCD$ be a cyclic quadrilateral. Let $P$ be the intersection of $BC$ and $AD$. Line $AC$ intersects the circumcircle of triangle $BDP$ in points $S$ and $T$, with $S$ between $A$ and $C$. Line $BD$ intersects the circumcircle of triangle $ACP$ in points $U$ and $V$, with $U$ between $B$ and $D$. Prove that $PS$ = $PT$ = $PU$ = $PV$.

1990 Romania Team Selection Test, 2

Prove that in any triangle $ABC$ the following inequality holds: \[ \frac{a^{2}}{b+c-a}+\frac{b^{2}}{a+c-b}+\frac{c^{2}}{a+b-c}\geq 3\sqrt{3}R. \] [i]Laurentiu Panaitopol[/i]

2017 Balkan MO Shortlist, G1

Let $ABC$ be an acute triangle. Variable points $E$ and $F$ are on sides $AC$ and $AB$ respectively such that $BC^2 = BA\cdot BF + CE \cdot CA$ . As $E$ and $F$ vary prove that the circumcircle of $AEF$ passes through a fixed point other than $A$ .

2022 Israel TST, 3

Scalene triangle $ABC$ has incenter $I$ and circumcircle $\Omega$ with center $O$. $H$ is the orthocenter of triangle $BIC$, and $T$ is a point on $\Omega$ for which $\angle ATI=90^\circ$. Circle $(AIO)$ intersects line $IH$ again at $X$. Show that the lines $AX, HT$ intersect on $\Omega$.

2004 Germany Team Selection Test, 2

Let two chords $AC$ and $BD$ of a circle $k$ meet at the point $K$, and let $O$ be the center of $k$. Let $M$ and $N$ be the circumcenters of triangles $AKB$ and $CKD$. Show that the quadrilateral $OMKN$ is a parallelogram.

2011 Iran MO (3rd Round), 2

In triangle $ABC$, $\omega$ is its circumcircle and $O$ is the center of this circle. Points $M$ and $N$ lie on sides $AB$ and $AC$ respectively. $\omega$ and the circumcircle of triangle $AMN$ intersect each other for the second time in $Q$. Let $P$ be the intersection point of $MN$ and $BC$. Prove that $PQ$ is tangent to $\omega$ iff $OM=ON$. [i]proposed by Mr.Etesami[/i]

2003 All-Russian Olympiad, 2

The diagonals of a cyclic quadrilateral $ABCD$ meet at $O$. Let $S_1, S_2$ be the circumcircles of triangles $ABO$ and $CDO$ respectively, and $O,K$ their intersection points. The lines through $O$ parallel to $AB$ and $CD$ meet $S_1$ and $S_2$ again at $L$ and $M$, respectively. Points $P$ and $Q$ on segments $OL$ and $OM$ respectively are taken such that $OP : PL = MQ : QO$. Prove that $O,K, P,Q$ lie on a circle.

2017 NIMO Problems, 5

In triangle $ABC$, $AB=12$, $BC=17$, and $AC=25$. Distinct points $M$ and $N$ lie on the circumcircle of $ABC$ such that $BM=CM$ and $BN=CN$. If $AM + AN = \tfrac{a\sqrt{b}}{c}$, where $a, b, c$ are positive integers such that $\gcd(a, c) = 1$ and $b$ is not divisible by the square of a prime, compute $100a+10b+c$. [i]Proposed by Michael Tang[/i]

2019 Simurgh, 2

Let $ABC$ be a triangle with $AB=AC$. Let point $Q$ be on plane such that $AQ \parallel BC$ and $AQ = AB$. Now let the $P$ be the foot of perpendicular from $Q$ to $BC$. Show that the circle with diameter $PQ$ is tangent to the circumcircle of triangle $ABC$.

2014 Online Math Open Problems, 12

The points $A$, $B$, $C$, $D$, $E$ lie on a line $\ell$ in this order. Suppose $T$ is a point not on $\ell$ such that $\angle BTC = \angle DTE$, and $\overline{AT}$ is tangent to the circumcircle of triangle $BTE$. If $AB = 2$, $BC = 36$, and $CD = 15$, compute $DE$. [i]Proposed by Yang Liu[/i]

2013 India IMO Training Camp, 2

Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.