This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2017 Baltic Way, 11

Let $H$ and $I$ be the orthocenter and incenter, respectively, of an acute-angled triangle $ABC$. The circumcircle of the triangle $BCI$ intersects the segment $AB$ at the point $P$ different from $B$. Let $K$ be the projection of $H$ onto $AI$ and $Q$ the reflection of $P$ in $K$. Show that $B$, $H$ and $Q$ are collinear. [i]Proposed by Mads Christensen, Denmark[/i]

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

2013 China Team Selection Test, 1

The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.

2018 Tuymaada Olympiad, 8

Quadrilateral $ABCD$ with perpendicular diagonals is inscribed in a circle with centre $O$. The tangents to this circle at $A$ and $C$ together with line $BD$ form the triangle $\Delta$. Prove that the circumcircles of $BOD$ and $\Delta$ are tangent. [hide=Additional information for Junior League]Show that this point lies belongs to $\omega$, the circumcircle of $OAC$[/hide] [i]Proposed by A. Kuznetsov[/i]

2017 All-Russian Olympiad, 3

In the scalene triangle $ABC$,$\angle ACB=60$ and $\Omega$ is its cirumcirle.On the bisectors of the angles $BAC$ and $CBA$ points $A^\prime$,$B^\prime$ are chosen respectively such that $AB^\prime \parallel BC$ and $BA^\prime \parallel AC$.$A^\prime B^\prime$ intersects with $\Omega$ at $D,E$.Prove that triangle $CDE$ is isosceles.(A. Kuznetsov)

Geometry Mathley 2011-12, 10.3

Let $ABC$ be a triangle inscribed in a circle $(O)$. d is the tangent at $A$ of $(O), P$ is an arbitrary point in the plane. $D,E, F$ are the projections of $P$ on $BC,CA,AB$. Let $DE,DF$ intersect the line $d$ at $M,N$ respectively. The circumcircle of triangle $DEF$ meets $CA,AB$ at $K,L$ distinct from $E, F$. Prove that $KN$ meets $LM$ at a point on the circumcircle of triangle $DEF$. Trần Quang Hùng

1977 Spain Mathematical Olympiad, 6

A triangle $ABC$ is considered, and let $D$ be the intersection point of the angle bisector corresponding to angle $A$ with side $BC$. Prove that the circumcircle that passes through $A$ and is tangent to line $BC$ at $D$, it is also tangent to the circle circumscribed around triangle $ABC$.

2006 France Team Selection Test, 2

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2015 Iran Team Selection Test, 2

In triangle $ABC$(with incenter $I$) let the line parallel to $BC$ from $A$ intersect circumcircle of $\triangle ABC$ at $A_1$ let $AI\cap BC=D$ and $E$ is tangency point of incircle with $BC$ let $ EA_1\cap \odot (\triangle ADE)=T$ prove that $AI=TI$.

2014 PUMaC Geometry A, 3

Let $O$ be the circumcenter of triangle $ABC$ with circumradius $15$. Let $G$ be the centroid of $ABC$ and let $M$ be the midpoint of $BC$. If $BC=18$ and $\angle MOA=150^\circ$, find the area of $OMG$.

2010 Contests, 3

Given an acute and scalene triangle $ABC$ with $AB<AC$ and random line $(e)$ that passes throuh the center of the circumscribed circles $c(O,R)$. Line $(e)$, intersects sides $BC,AC,AB$ at points $A_1,B_1,C_1$ respectively (point $C_1$ lies on the extension of $AB$ towards $B$). Perpendicular from $A$ on line $(e)$ and $AA_1$ intersect circumscribed circle $c(O,R)$ at points $M$ and $A_2$ respectively. Prove that a) points $O,A_1,A_2, M$ are consyclic b) if $(c_2)$ is the circumcircle of triangle $(OBC_1)$ and $(c_3)$ is the circumcircle of triangle $(OCB_1)$, then circles $(c_1),(c_2)$ and $(c_3)$ have a common chord

2020 BMT Fall, 21

Let $\vartriangle ABC$ be a right triangle with legs $AB = 6$ and $AC = 8$. Let $I$ be the incenter of $\vartriangle ABC$ and $X$ be the other intersection of $AI$ with the circumcircle of $\vartriangle ABC$. Find $\overline{AI} \cdot \overline{IX}$.

2024 Iran MO (3rd Round), 3

Consider an acute scalene triangle $\triangle{ABC}$. The interior bisector of $A$ intersects $BC$ at $E$ and the minor arc of $\overarc {BC}$ in circumcircle of $\triangle{ABC}$ at $M$. Suppose that $D$ is a point on the minor arc of $\overarc {BC}$ such that $ED=EM$. $P$ is a point on the line segment of $AD$ such that $\angle ABP=\angle ACP \not= 0$. $O$ is the circumcenter of $\triangle{ABC}$. Prove that $OP \perp AM$.

2009 USAMO, 1

Given circles $ \omega_1$ and $ \omega_2$ intersecting at points $ X$ and $ Y$, let $ \ell_1$ be a line through the center of $ \omega_1$ intersecting $ \omega_2$ at points $ P$ and $ Q$ and let $ \ell_2$ be a line through the center of $ \omega_2$ intersecting $ \omega_1$ at points $ R$ and $ S$. Prove that if $ P, Q, R$ and $ S$ lie on a circle then the center of this circle lies on line $ XY$.

2013 Iran Team Selection Test, 17

In triangle $ABC$, $AD$ and $AH$ are the angle bisector and the altitude of vertex $A$, respectively. The perpendicular bisector of $AD$, intersects the semicircles with diameters $AB$ and $AC$ which are drawn outside triangle $ABC$ in $X$ and $Y$, respectively. Prove that the quadrilateral $XYDH$ is concyclic. [i]Proposed by Mahan Malihi[/i]

2015 Korea - Final Round, 4

$\triangle ABC$ is an acute triangle and its orthocenter is $H$. The circumcircle of $\triangle ABH$ intersects line $BC$ at $D$. Lines $DH$ and $AC$ meets at $P$, and the circumcenter of $\triangle ADP$ is $Q$. Prove that the circumcenter of $\triangle ABH$ lies on the circumcircle of $\triangle BDQ$.

2021 Serbia JBMO TSTs, 4

On sides $AB$ and $AC$ of an acute triangle $\Delta ABC$, with orthocenter $H$ and circumcenter $O$, are given points $P$ and $Q$ respectively such that $APHQ$ is a parallelogram. Prove the following equality: \begin{align*} \frac{PB\cdot PQ}{QA\cdot QO}=2 \end{align*}

2015 Azerbaijan Team Selection Test, 1

Let $\omega$ be the circumcircle of an acute-angled triangle $ABC$. The lines tangent to $\omega$ at the points $A$ and $B$ meet at $K$. The line passing through $K$ and parallel to $BC$ intersects the side $AC$ at $S$. Prove that $BS=CS$

2004 Tournament Of Towns, 4

A circle with the center $I$ is entirely inside of a circle with center $O$. Consider all possible chords $AB$ of the larger circle which are tangent to the smaller one. Find the locus of the centers of the circles circumscribed about the triangle $AIB$.

MathLinks Contest 7th, 6.3

Let $ \Omega$ be the circumcircle of triangle $ ABC$. Let $ D$ be the point at which the incircle of $ ABC$ touches its side $ BC$. Let $ M$ be the point on $ \Omega$ such that the line $ AM$ is parallel to $ BC$. Also, let $ P$ be the point at which the circle tangent to the segments $ AB$ and $ AC$ and to the circle $ \Omega$ touches $ \Omega$. Prove that the points $ P$, $ D$, $ M$ are collinear.

2011 Sharygin Geometry Olympiad, 2

In triangle $ABC, \angle B = 2\angle C$. Points $P$ and $Q$ on the medial perpendicular to $CB$ are such that $\angle CAP = \angle PAQ = \angle QAB = \frac{\angle A}{3}$ . Prove that $Q$ is the circumcenter of triangle $CPB$.

2011 IMO Shortlist, 8

Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $\ell$ be a tangent line to $\Gamma$, and let $\ell_a, \ell_b$ and $\ell_c$ be the lines obtained by reflecting $\ell$ in the lines $BC$, $CA$ and $AB$, respectively. Show that the circumcircle of the triangle determined by the lines $\ell_a, \ell_b$ and $\ell_c$ is tangent to the circle $\Gamma$. [i]Proposed by Japan[/i]

2007 Harvard-MIT Mathematics Tournament, 28

Compute the circumradius of cyclic hexagon $ABCDEF$, which has side lengths $AB=BC=2$, $CD=DE=9$, and $EF=FA=12$.

2023 Junior Balkan Team Selection Tests - Moldova, 2

Let $\Omega$ be the circumscribed circle of the acute triangle $ABC$ and $ D $ a point the small arc $BC$ of $\Omega$. Points $E$ and $ F $ are on the sides $ AB$ and $AC$, respectively, such that the quadrilateral $CDEF$ is a parallelogram. Point $G$ is on the small arc $AC$ such that lines $DC$ and $BG$ are parallel. Prove that the angles $GFC$ and $BAC$ are equal.

2011 Greece Junior Math Olympiad, 1

Let $ABC$ be a triangle with $\angle BAC=120^o$, which the median $AD$ is perpendicular to side $AB$ and intersects the circumscribed circle of triangle $ABC$ at point $E$. Lines $BA$ and $EC$ intersect at $Z$. Prove that a) $ZD \perp BE$ b) $ZD=BC$