Found problems: 3882
1999 Turkey MO (2nd round), 5
In an acute triangle $\vartriangle ABC$ with circumradius $R$, altitudes $\overline{AD},\overline{BE},\overline{CF}$ have lengths ${{h}_{1}},{{h}_{2}},{{h}_{3}}$, respectively. If ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ are lengths of the tangents from $A,B,C$, respectively, to the circumcircle of triangle $\vartriangle DEF$, prove that
$\sum\limits_{i=1}^{3}{{{\left( \frac{t{}_{i}}{\sqrt{h{}_{i}}} \right)}^{2}}\le }\frac{3}{2}R$.
2019 Romania Team Selection Test, 2
Let $ABC$ be an acute triangle with $AB<BC$. Let $I$ be the incenter of $ABC$, and let $\omega$ be the circumcircle of $ABC$. The incircle of $ABC$ is tangent to the side $BC$ at $K$. The line $AK$ meets $\omega$ again at $T$. Let $M$ be the midpoint of the side $BC$, and let $N$ be the midpoint of the arc $BAC$ of $\omega$. The segment $NT$ intersects the circumcircle of $BIC$ at $P$. Prove that $PM\parallel AK$.
2013 Iran Team Selection Test, 12
Let $ABCD$ be a cyclic quadrilateral that inscribed in the circle $\omega$.Let $I_{1},I_{2}$ and $r_{1},r_{2}$ be incenters and radii of incircles of triangles $ACD$ and $ABC$,respectively.assume that $r_{1}=r_{2}$. let $\omega'$ be a circle that touches $AB,AD$ and touches $\omega$ at $T$. tangents from $A,T$ to $\omega$ meet at the point $K$.prove that $I_{1},I_{2},K$ lie on a line.
1999 USAMTS Problems, 5
In $\triangle ABC$, $AC>BC$, $CM$ is the median, and $CH$ is the altitude emanating from $C$, as shown in the figure on the right. Determine the measure of $\angle MCH$ if $\angle ACM$ and $\angle BCH$ each have measure $17^\circ$.
[asy]
size(200);
defaultpen(linewidth(0.8));
pair A=origin,B=(10,0),C=(7,5),M=(5,0),H=(7,0);
draw(A--C--B--cycle^^H--C--M);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,NE);
label("$M$",M,NW);
label("$H$",H,NE);
[/asy]
1997 Junior Balkan MO, 4
Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$.
[i]Romania[/i]
2014 Contests, 2
Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i].
(a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent.
(b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.
2014 Dutch IMO TST, 3
Let $H$ be the orthocentre of an acute triangle $ABC$. The line through $A$ perpendicular to $AC$ and the line through $B$ perpendicular to $BC$ intersect in $D$. The circle with centre $C$ through $H$ intersects the circumcircle of triangle $ABC$ in the points $E$ and $F$. Prove that $|DE| = |DF| = |AB|$.
2005 IberoAmerican, 5
Let $O$ be the circumcenter of acutangle triangle $ABC$ and let $A_1$ be some point in the smallest arc $BC$ of the circumcircle of $ABC$. Let $A_2$ and $A_3$ points on sides $AB$ and $AC$, respectively, such that $\angle BA_1A_2 = \angle OAC$ and $\angle CA_1A_3 = \angle OAB$.
Prove that the line $A_2A_3$ passes through the orthocenter of $ABC$.
2025 Junior Macedonian Mathematical Olympiad, 2
Let $B_1$ be the foot of the altitude from the vertex $B$ in the acute-angled $\triangle ABC$. Let $D$ be the midpoint of side $AB$, and $O$ be the circumcentre of $\triangle ABC$. Line $B_1D$ meets line $CO$ at $E$. Prove that the points $B, C, B_1$, and $E$ lie on a circle.
2018 PUMaC Geometry A, 5
Let $\triangle BC$ be a triangle with side lengths $AB = 9, BC = 10, CA = 11$. Let $O$ be the circumcenter of $\triangle ABC$. Denote $D = AO \cap BC, E = BO \cap CA, F = CO \cap AB$. If $\frac{1}{AD} + \frac{1}{BE} + \frac{1}{FC}$ can be written in simplest form as $\frac{a \sqrt{b}}{c}$, find $a + b + c$.
2019 Saudi Arabia Pre-TST + Training Tests, 3.1
Let $ABC$ be a triangle inscribed in a circle ($\omega$) and $I$ is the incenter. Denote $D,E$ as the intersection of $AI,BI$ with ($\omega$). And $DE$ cuts $AC,BC$ at $F,G$ respectively. Let $P$ be a point such that $PF \parallel AD$ and $PG \parallel BE$. Suppose that the tangent lines of ($\omega$) at $A,B$ meet at $K$. Prove that three lines $AE,BD,KP$ are concurrent or parallel.
2002 Baltic Way, 13
Let $ABC$ be an acute triangle with $\angle BAC>\angle BCA$, and let $D$ be a point on side $AC$ such that $|AB|=|BD|$. Furthermore, let $F$ be a point on the circumcircle of triangle $ABC$ such that line $FD$ is perpendicular to side $BC$ and points $F,B$ lie on different sides of line $AC$. Prove that line $FB$ is perpendicular to side $AC$ .
1997 Pre-Preparation Course Examination, 2
An acute triangle $ ABC$ is given. Points $ A_1$ and $ A_2$ are taken on the side $ BC$ (with $ A_2$ between $ A_1$ and $ C$), $ B_1$ and $ B_2$ on the side $ AC$ (with $ B_2$ between $ B_1$ and $ A$), and $ C_1$ and $ C_2$ on the side $ AB$ (with $ C_2$ between $ C_1$ and $ B$) so that
\[ \angle AA_1A_2 \equal{} \angle AA_2A_1 \equal{} \angle BB_1B_2 \equal{} \angle BB_2B_1 \equal{} \angle CC_1C_2 \equal{} \angle CC_2C_1.\]
The lines $ AA_1,BB_1,$ and $ CC_1$ bound a triangle, and the lines $ AA_2,BB_2,$ and $ CC_2$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.
1990 Baltic Way, 8
It is known that for any point $P$ on the circumcircle of a triangle $ABC$, the orthogonal projections of $P$ onto $AB,BC,CA$ lie on a line, called a [i]Simson line[/i] of $P$. Show that the Simson lines of two diametrically opposite points $P_1$ and $P_2$ are perpendicular.
2009 Argentina Team Selection Test, 3
Let $ ABC$ be a triangle, $ B_1$ the midpoint of side $ AB$ and $ C_1$ the midpoint of side $ AC$. Let $ P$ be the point of intersection ($ \neq A$) of the circumcircles of triangles $ ABC_1$ and $ AB_1C$. Let $ Q$ be the point of intersection ($ \neq A$) of the line $ AP$ and the circumcircle of triangle $ AB_1C_1$.
Prove that $ \frac{AP}{AQ} \equal{} \frac{3}{2}$.
1995 Bulgaria National Olympiad, 2
Let triangle ABC has semiperimeter $ p$. E,F are located on AB such that $ CE\equal{}CF\equal{}p$. Prove that the C-excircle of triangle ABC touches the circumcircle (EFC).
2008 Iran Team Selection Test, 12
In the acute-angled triangle $ ABC$, $ D$ is the intersection of the altitude passing through $ A$ with $ BC$ and $ I_a$ is the excenter of the triangle with respect to $ A$. $ K$ is a point on the extension of $ AB$ from $ B$, for which $ \angle AKI_a\equal{}90^\circ\plus{}\frac 34\angle C$. $ I_aK$ intersects the extension of $ AD$ at $ L$. Prove that $ DI_a$ bisects the angle $ \angle AI_aB$ iff $ AL\equal{}2R$. ($ R$ is the circumradius of $ ABC$)
2011 Turkey Team Selection Test, 1
Let $D$ be a point different from the vertices on the side $BC$ of a triangle $ABC.$ Let $I, \: I_1$ and $I_2$ be the incenters of the triangles $ABC, \: ABD$ and $ADC,$ respectively. Let $E$ be the second intersection point of the circumcircles of the triangles $AI_1I$ and $ADI_2,$ and $F$ be the second intersection point of the circumcircles of the triangles $AII_2$ and $AI_1D.$ Prove that if $AI_1=AI_2,$ then
\[ \frac{EI}{FI} \cdot \frac{ED}{FD}=\frac{{EI_1}^2}{{FI_1}^2}.\]
2015 Azerbaijan IMO TST, 1
Let $\omega$ be the circumcircle of an acute-angled triangle $ABC$. The lines tangent to $\omega$ at the points $A$ and $B$ meet at $K$. The line passing through $K$ and parallel to $BC$ intersects the side $AC$ at $S$. Prove that $BS=CS$
2017 Bosnia and Herzegovina EGMO TST, 2
It is given triangle $ABC$ and points $P$ and $Q$ on sides $AB$ and $AC$, respectively, such that $PQ\mid\mid BC$. Let $X$ and $Y$ be intersection points of lines $BQ$ and $CP$ with circumcircle $k$ of triangle $APQ$, and $D$ and $E$ intersection points of lines $AX$ and $AY$ with side $BC$. If $2\cdot DE=BC$, prove that circle $k$ contains intersection point of angle bisector of $\angle BAC$ with $BC$
2013 All-Russian Olympiad, 3
Squares $CAKL$ and $CBMN$ are constructed on the sides of acute-angled triangle $ABC$, outside of the triangle. Line $CN$ intersects line segment $AK$ at $X$, while line $CL$ intersects line segment $BM$ at $Y$. Point $P$, lying inside triangle $ABC$, is an intersection of the circumcircles of triangles $KXN$ and $LYM$. Point $S$ is the midpoint of $AB$. Prove that angle $\angle ACS=\angle BCP$.
2012 Belarus Team Selection Test, 2
Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let $O_1$ and $r_1$ be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define $O_2,O_3,O_4$ and $r_2,r_3,r_4$ in a similar way. Prove that
\[\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.\]
[i]Proposed by Alexey Gladkich, Israel[/i]
2014 ELMO Shortlist, 13
Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.
[i]Proposed by David Stoner[/i]
2011 AIME Problems, 13
Point $P$ lies on the diagonal $AC$ of square $ABCD$ with $AP>CP$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABP$ and $CDP$ respectively. Given that $AB=12$ and $\angle O_1 P O_2 = 120^\circ$, then $AP=\sqrt{a}+\sqrt{b}$ where $a$ and $b$ are positive integers. Find $a+b$.
2012 France Team Selection Test, 2
Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.