This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2014 Iran Team Selection Test, 2

Point $D$ is an arbitary point on side $BC$ of triangle $ABC$. $I$,$I_1$ and$I_2$ are the incenters of triangles $ABC$,$ABD$ and $ACD$ respectively. $M\not=A$ and $N\not=A$ are the intersections of circumcircle of triangle $ABC$ and circumcircles of triangles $IAI_1$ and $IAI_2$ respectively. Prove that regardless of point $D$, line $MN$ goes through a fixed point.

2011 Baltic Way, 14

The incircle of a triangle $ABC$ touches the sides $BC,CA,AB$ at $D,E,F$, respectively. Let $G$ be a point on the incircle such that $FG$ is a diameter. The lines $EG$ and $FD$ intersect at $H$. Prove that $CH\parallel AB$.

2012 All-Russian Olympiad, 2

The points $A_1,B_1,C_1$ lie on the sides $BC,CA$ and $AB$ of the triangle $ABC$ respectively. Suppose that $AB_1-AC_1=CA_1-CB_1=BC_1-BA_1$. Let $O_A,O_B$ and $O_C$ be the circumcentres of triangles $AB_1C_1,A_1BC_1$ and $A_1B_1C$ respectively. Prove that the incentre of triangle $O_AO_BO_C$ is the incentre of triangle $ABC$ too.

2007 Iran Team Selection Test, 1

In triangle $ABC$, $M$ is midpoint of $AC$, and $D$ is a point on $BC$ such that $DB=DM$. We know that $2BC^{2}-AC^{2}=AB.AC$. Prove that \[BD.DC=\frac{AC^{2}.AB}{2(AB+AC)}\]

2021 China Team Selection Test, 5

Given a triangle $ABC$, a circle $\Omega$ is tangent to $AB,AC$ at $B,C,$ respectively. Point $D$ is the midpoint of $AC$, $O$ is the circumcenter of triangle $ABC$. A circle $\Gamma$ passing through $A,C$ intersects the minor arc $BC$ on $\Omega$ at $P$, and intersects $AB$ at $Q$. It is known that the midpoint $R$ of minor arc $PQ$ satisfies that $CR \perp AB$. Ray $PQ$ intersects line $AC$ at $L$, $M$ is the midpoint of $AL$, $N$ is the midpoint of $DR$, and $X$ is the projection of $M$ onto $ON$. Prove that the circumcircle of triangle $DNX$ passes through the center of $\Gamma$.

1986 Tournament Of Towns, (117) 5

The bisector of angle $BAD$ in the parallelogram $ABCD$ intersects the lines $BC$ and $CD$ at the points $K$ and $L$ respectively. It is known that $ABCD$ is not a rhombus. Prove that the centre of the circle passing through the points $C, K$ and $L$ lies on the circle passing through the points $B, C$ and $D$.

1981 IMO, 2

Three circles of equal radius have a common point $O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point $O$.

2000 APMO, 3

Let $ABC$ be a triangle. Let $M$ and $N$ be the points in which the median and the angle bisector, respectively, at $A$ meet the side $BC$. Let $Q$ and $P$ be the points in which the perpendicular at $N$ to $NA$ meets $MA$ and $BA$, respectively. And $O$ the point in which the perpendicular at $P$ to $BA$ meets $AN$ produced. Prove that $QO$ is perpendicular to $BC$.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2017 USA Team Selection Test, 2

Let $ABC$ be an acute scalene triangle with circumcenter $O$, and let $T$ be on line $BC$ such that $\angle TAO = 90^{\circ}$. The circle with diameter $\overline{AT}$ intersects the circumcircle of $\triangle BOC$ at two points $A_1$ and $A_2$, where $OA_1 < OA_2$. Points $B_1$, $B_2$, $C_1$, $C_2$ are defined analogously. [list=a][*] Prove that $\overline{AA_1}$, $\overline{BB_1}$, $\overline{CC_1}$ are concurrent. [*] Prove that $\overline{AA_2}$, $\overline{BB_2}$, $\overline{CC_2}$ are concurrent on the Euler line of triangle $ABC$. [/list][i]Evan Chen[/i]

2020 Serbia National Math Olympiad, 3

We are given a triangle $ABC$. Points $D$ and $E$ on the line $AB$ are such that $AD=AC$ and $BE=BC$, with the arrangment of points $D - A - B - E$. The circumscribed circles of the triangles $DBC$ and $EAC$ meet again at the point $X\neq C$, and the circumscribed circles of the triangles $DEC$ and $ABC$ meet again at the point $Y\neq C$. Find the measure of $\angle ACB$ given the condition $DY+EY=2XY$.

2009 Romania Team Selection Test, 3

Prove that pentagon $ ABCDE$ is cyclic if and only if \[\mathrm{d(}E,AB\mathrm{)}\cdot \mathrm{d(}E,CD\mathrm{)} \equal{} \mathrm{d(}E,AC\mathrm{)}\cdot \mathrm{d(}E,BD\mathrm{)} \equal{} \mathrm{d(}E,AD\mathrm{)}\cdot \mathrm{d(}E,BC\mathrm{)}\] where $ \mathrm{d(}X,YZ\mathrm{)}$ denotes the distance from point $ X$ ot the line $ YZ$.

2014 Contests, 2

Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.

2018 China Northern MO, 6

Let $H$ be the orthocenter of triangle $ABC$. Let $D$ and $E$ be points on $AB$ and $AC$ such that $DE$ is parallel to $CH$. If the circumcircle of triangle $BDH$ passes through $M$, the midpoint of $DE$, then prove that $\angle ABM=\angle ACM$

2022 JHMT HS, 4

Hexagon $ARTSCI$ has side lengths $AR=RT=TS=SC=4\sqrt2$ and $CI=IA=10\sqrt2$. Moreover, the vertices $A$, $R$, $T$, $S$, $C$, and $I$ lie on a circle $\mathcal{K}$. Find the area of $\mathcal{K}$.

2004 Junior Balkan Team Selection Tests - Moldova, 7

Let the triangle $ABC$ have area $1$. The interior bisectors of the angles $\angle BAC,\angle ABC, \angle BCA$ intersect the sides $(BC), (AC), (AB) $ and the circumscribed circle of the respective triangle $ABC$ at the points $L$ and $G, N$ and $F, Q$ and $E$. The lines $EF, FG,GE$ intersect the bisectors $(AL), (CQ) ,(BN)$ respectively at points $P, M, R$. Determine the area of the hexagon $LMNPR$.

2017 Ukrainian Geometry Olympiad, 4

Let $ABCD$ be a parallelogram and $P$ be an arbitrary point of the circumcircle of $\Delta ABD$, different from the vertices. Line $PA$ intersects the line $CD$ at point $Q$. Let $O$ be the center of the circumcircle $\Delta PCQ$. Prove that $\angle ADO = 90^o$.

1971 Bulgaria National Olympiad, Problem 4

It is given a triangle $ABC$. Let $R$ be the radius of the circumcircle of the triangle and $O_1,O_2,O_3$ be the centers of excircles of the triangle $ABC$ and $q$ is the perimeter of the triangle $O_1O_2O_3$. Prove that $q\le6R\sqrt3$. When does equality hold?

2009 Germany Team Selection Test, 3

In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$. [i]Proposed by Davood Vakili, Iran[/i]

2014 Iran Team Selection Test, 6

The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $BC$ at $D$. let $X$ is a point on arc $BC$ from circumcircle of triangle $ABC$ such that if $E,F$ are feet of perpendicular from $X$ on $BI,CI$ and $M$ is midpoint of $EF$ we have $MB=MC$. prove that $\widehat{BAD}=\widehat{CAX}$

2008 Saint Petersburg Mathematical Olympiad, 1

The graph $y=x^2+ax+b$ intersects any of the two axes at points $A$, $B$, and $C$. The incenter of triangle $ABC$ lies on the line $y=x$. Prove that $a+b+1=0$.

2018 Belarusian National Olympiad, 10.6

The vertices of the convex quadrilateral $ABCD$ lie on the parabola $y=x^2$. It is known that $ABCD$ is cyclic and $AC$ is a diameter of its circumcircle. Let $M$ and $N$ be the midpoints of the diagonals of $AC$ and $BD$ respectively. Find the length of the projection of the segment $MN$ on the axis $Oy$.

2023 Thailand Mathematical Olympiad, 8

Let $ABC$ be an acute triangle. The tangent at $A,B$ of the circumcircle of $ABC$ intersect at $T$. Line $CT$ meets side $AB$ at $D$. Denote by $\Gamma_1,\Gamma_2$ the circumcircle of triangle $CAD$, and the circumcircle of triangle $CBD$, respectively. Let line $TA$ meet $\Gamma_1$ again at $E$ and line $TB$ meet $\Gamma_2$ again at $F$. Line $EF$ intersects sides $AC,BC$ at $P,Q$, respectively. Prove that $EF=PQ+AB$.

2023 Serbia Team Selection Test, P2

A circle centered at $A$ intersects sides $AC$ and $AB$ of $\triangle ABC$ at $E$ and $F$, and the circumcircle of $\triangle ABC$ at $X$ and $Y$. Let $D$ be the point on $BC$ such that $AD$, $BE$, $CF$ concur. Let $P=XE\cap YF$ and $Q=XF\cap YE$. Prove that the foot of the perpendicular from $D$ to $EF$ lies on $PQ$.

2007 ITest, 60

Let $T=\text{TNFTPP}$. Triangle $ABC$ has $AB=6T-3$ and $AC=7T+1$. Point $D$ is on $BC$ so that $AD$ bisects angle $BAC$. The circle through $A$, $B$, and $D$ has center $O_1$ and intersects line $AC$ again at $B'$, and likewise the circle through $A$, $C$, and $D$ has center $O_2$ and intersects line $AB$ again at $C'$. If the four points $B'$, $C'$, $O_1$, and $O_2$ lie on a circle, find the length of $BC$.