This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2009 Belarus Team Selection Test, 2

In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$. [i]Proposed by Davood Vakili, Iran[/i]

2012 Albania Team Selection Test, 2

It is given an acute triangle $ABC$ , $AB \neq AC$ where the feet of altitude from $A$ its $H$. In the extensions of the sides $AB$ and $AC$ (in the direction of $B$ and $C$) we take the points $P$ and $Q$ respectively such that $HP=HQ$ and the points $B,C,P,Q$ are concyclic. Find the ratio $\tfrac{HP}{HA}$.

2010 Indonesia MO, 2

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent. [i]Fajar Yuliawan, Bandung[/i]

2006 MOP Homework, 7

Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $T$. Let $X$ be a point on circle $\omega_1$. Line $l_1$ is tangent to circle $\omega_1$ and $X$, and line $l$ intersects circle $\omega_2$ at $A$ and $B$. Line $XT$ meets circle $\omega$ at $S$. Point $C$ lies on arc $TS$ (of circle $\omega_2$, not containing points $A$ and $B$). Point $Y$ lies on circle $\omega_1$ and line $YC$ is tangent to circle $\omega_1$. Let $I$ be the intersection of lines $XY$ ad $SC$. Prove that... a) points $C$, $T$, $Y$, $I$ lie on a circle (B) $I$ is an excenter of triangle $ABC$.

2013 ELMO Shortlist, 10

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2018 Taiwan TST Round 1, 2

In a plane, we are given $ 100 $ circles with radius $ 1 $ so that the area of any triangle whose vertices are circumcenters of those circles is at most $ 100 $. Prove that one may find a line that intersects at least $ 10 $ circles.

2018 PUMaC Geometry B, 7

Let $\triangle BC$ be a triangle with side lengths $AB = 9, BC = 10, CA = 11$. Let $O$ be the circumcenter of $\triangle ABC$. Denote $D = AO \cap BC, E = BO \cap CA, F = CO \cap AB$. If $\frac{1}{AD} + \frac{1}{BE} + \frac{1}{FC}$ can be written in simplest form as $\frac{a \sqrt{b}}{c}$, find $a + b + c$.

2019 Pan-African Shortlist, G1

The tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$ meet at $D$. The circumcircle of $\triangle BCD$ meets sides $AC$ and $AB$ again at $E$ and $F$ respectively. Let $O$ be the circumcentre of $\triangle ABC$. Show that $AO$ is perpendicular to $EF$.

2019 Peru EGMO TST, 2

Let $\Gamma$ be the circle of an acute triangle $ABC$ and let $H$ be its orthocenter. The circle $\omega$ with diameter $AH$ cuts $\Gamma$ at point $D$ ($D\ne A$). Let $M$ be the midpoint of the smaller arc $BC$ of $\Gamma$ . Let $N$ be the midpoint of the largest arc $BC$ of the circumcircle of the triangle $BHC$. Prove that there is a circle that passes through the points $D, H, M$ and $N$.

2007 All-Russian Olympiad, 3

$BB_{1}$ is a bisector of an acute triangle $ABC$. A perpendicular from $B_{1}$ to $BC$ meets a smaller arc $BC$ of a circumcircle of $ABC$ in a point $K$. A perpendicular from $B$ to $AK$ meets $AC$ in a point $L$. $BB_{1}$ meets arc $AC$ in $T$. Prove that $K$, $L$, $T$ are collinear. [i]V. Astakhov[/i]

2018 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a triangle with $AB > AC$. Point $P \in (AB)$ is such that $\angle ACP = \angle ABC$. Let $D$ be the reflection of $P$ into the line $AC$ and let $E$ be the point in which the circumcircle of $BCD$ meets again the line $AC$. Prove that $AE = AC$.

2014 Saint Petersburg Mathematical Olympiad, 7

$I$ - incenter , $M$- midpoint of arc $BAC$ of circumcircle, $AL$ - angle bisector of triangle $ABC$. $MI$ intersect circumcircle in $K$. Circumcircle of $AKL$ intersect $BC$ at $L$ and $P$. Prove that $\angle AIP=90$

2005 Postal Coaching, 16

The diagonals AC and BD of a cyclic ABCD intersect at E. Let O be circumcentre of ABCD. If midpoints of AB, CD, OE are collinear prove that AD=BC. Bomb [color=red][Moderator edit: The problem is wrong. See also http://www.mathlinks.ro/Forum/viewtopic.php?t=53090 .][/color]

2021 Romanian Master of Mathematics Shortlist, G2

Let $ABC$ be a triangle with incenter $I$. The line through $I$, perpendicular to $AI$, intersects the circumcircle of $ABC$ at points $P$ and $Q$. It turns out there exists a point $T$ on the side $BC$ such that $AB + BT = AC + CT$ and $AT^2 = AB \cdot AC$. Determine all possible values of the ratio $IP/IQ$.

2022 Thailand TSTST, 3

An acute scalene triangle $ABC$ with circumcircle $\Omega$ is given. The altitude from $B$ intersects side $AC$ at $B_1$ and circle $\Omega$ at $B_2$. The circle with diameter $B_1B_2$ intersects circle $\Omega$ again at $B_3$. Similarly, the altitude from $C$ intersects side $AB$ at $C_1$ and circle $\Omega$ at $C_2$. The circle with diameter $C_1C_2$ intersects circle $\Omega$ again at $C_3$. Let $X$ be the intersection of lines $B_1B_3$ and $C_1C_3$, and let $Y$ be the intersection of lines $B_3C$ and $C_3B$. Prove that line $XY$ bisects side $BC$.

2017 Oral Moscow Geometry Olympiad, 3

On the plane, a non-isosceles triangle is given, a circle circumscribed around it and the center of its inscribed circle are marked. Using only a ruler without tick marks and drawing no more than seven lines, construct the diameter of the circumcircle.

2002 Canada National Olympiad, 4

Let $\Gamma$ be a circle with radius $r$. Let $A$ and $B$ be distinct points on $\Gamma$ such that $AB < \sqrt{3}r$. Let the circle with centre $B$ and radius $AB$ meet $\Gamma$ again at $C$. Let $P$ be the point inside $\Gamma$ such that triangle $ABP$ is equilateral. Finally, let the line $CP$ meet $\Gamma$ again at $Q$. Prove that $PQ = r$.

2014 Uzbekistan National Olympiad, 5

Let $PA_1A_2...A_{12} $ be the regular pyramid, $ A_1A_2...A_{12} $ is regular polygon, $S$ is area of the triangle $PA_1A_5$ and angle between of the planes $A_1A_2...A_{12} $ and $ PA_1A_5 $ is equal to $ \alpha $. Find the volume of the pyramid.

2019 All-Russian Olympiad, 4

Let $ABC$ be an acute-angled triangle with $AC<BC.$ A circle passes through $A$ and $B$ and crosses the segments $AC$ and $BC$ again at $A_1$ and $B_1$ respectively. The circumcircles of $A_1B_1C$ and $ABC$ meet each other at points $P$ and $C.$ The segments $AB_1$ and $A_1B$ intersect at $S.$ Let $Q$ and $R$ be the reflections of $S$ in the lines $CA$ and $CB$ respectively. Prove that the points $P,$ $Q,$ $R,$ and $C$ are concyclic.

2021 Taiwan TST Round 3, 2

Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Gamma$. Circles $\omega_{B}$ passing through $B$ and $\omega_{C}$ passing through $C$ are tangent at $I$. Let $\omega_{B}$ meet minor arc $AB$ of $\Gamma$ at $P$ and $AB$ at $M\neq B$, and let $\omega_{C}$ meet minor arc $AC$ of $\Gamma$ at $Q$ and $AC$ at $N\neq C$. Rays $PM$ and $QN$ meet at $X$. Let $Y$ be a point such that $YB$ is tangent to $\omega_{B}$ and $YC$ is tangent to $\omega_{C}$. Show that $A,X,Y$ are collinear.

2001 District Olympiad, 3

Consider an inscriptible polygon $ABCDE$. Let $H_1,H_2,H_3,H_4,H_5$ be the orthocenters of the triangles $ABC,BCD,CDE,DEA,EAB$ and let $M_1,M_2,M_3,M_4,M_5$ be the midpoints of $DE,EA,AB,BC$ and $CD$, respectively. Prove that the lines $H_1M_1,H_2M_2,H_3M_3,H_4M_4,H_5M_5$ have a common point. [i]Dinu Serbanescu[/i]

2008 ITAMO, 1

Let $ ABCDEFGHILMN$ be a regular dodecagon, let $ P$ be the intersection point of the diagonals $ AF$ and $ DH$. Let $ S$ be the circle which passes through $ A$ and $ H$, and which has the same radius of the circumcircle of the dodecagon, but is different from the circumcircle of the dodecagon. Prove that: 1. $ P$ lies on $ S$ 2. the center of $ S$ lies on the diagonal $ HN$ 3. the length of $ PE$ equals the length of the side of the dodecagon

2010 Indonesia TST, 1

Let $ ABCD$ be a trapezoid such that $ AB \parallel CD$ and assume that there are points $ E$ on the line outside the segment $ BC$ and $ F$ on the segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Let $ I,J,K$ respectively be the intersection of line $ EF$ and line $ CD$, the intersection of line $ EF$ and line $ AB$, and the midpoint of segment $ EF$. Prove that $ K$ is on the circumcircle of triangle $ CDJ$ if and only if $ I$ is on the circumcircle of triangle $ ABK$. [i]Utari Wijayanti, Bandung[/i]

Cono Sur Shortlist - geometry, 2020.G3.3

Let $ABC$ be an acute triangle such that $AC<BC$ and $\omega$ its circumcircle. $M$ is the midpoint of $BC$. Points $F$ and $E$ are chosen in $AB$ and $BC$, respectively, such that $AC=CF$ and $EB=EF$. The line $AM$ intersects $\omega$ in $D\neq A$. The line $DE$ intersects the line $FM$ in $G$. Prove that $G$ lies on $\omega$.

1968 AMC 12/AHSME, 12

A circle passes through the vertices of a triangle with side-lengths of $7\tfrac{1}{2},10,12\tfrac{1}{2}$. The radius of the circle is: $\textbf{(A)}\ \dfrac{15}{4} \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ \dfrac{25}{4} \qquad \textbf{(D)}\ \dfrac{35}{4} \qquad \textbf{(E)}\ \dfrac{15\sqrt2}{2} $