Found problems: 3882
2020 Junior Balkan Team Selection Tests - Moldova, 11
Let $\triangle ABC$ be an acute triangle. The bisector of $\angle ACB$ intersects side $AB$ in $D$. The circumcircle of triangle $ADC$ intersects side $BC$ in $C$ and $E$ with $C \neq E$. The line parallel to $AE$ which passes through $B$ intersects line $CD$ in $F$. Prove that the triangle $\triangle AFB$ is isosceles.
2013 NIMO Problems, 4
Let $a,b,c$ be the answers to problems $4$, $5$, and $6$, respectively. In $\triangle ABC$, the measures of $\angle A$, $\angle B$, and $\angle C$ are $a$, $b$, $c$ in degrees, respectively. Let $D$ and $E$ be points on segments $AB$ and $AC$ with $\frac{AD}{BD} = \frac{AE}{CE} = 2013$. A point $P$ is selected in the interior of $\triangle ADE$, with barycentric coordinates $(x,y,z)$ with respect to $\triangle ABC$ (here $x+y+z=1$). Lines $BP$ and $CP$ meet line $DE$ at $B_1$ and $C_1$, respectively. Suppose that the radical axis of the circumcircles of $\triangle PDC_1$ and $\triangle PEB_1$ pass through point $A$. Find $100x$.
[i]Proposed by Evan Chen[/i]
2016 IberoAmerican, 3
Let $ABC$ be an acute triangle and $\Gamma$ its circumcircle. The lines tangent to $\Gamma$ through $B$ and $C$ meet at $P$. Let $M$ be a point on the arc $AC$ that does not contain $B$ such that $M \neq A$ and $M \neq C$, and $K$ be the point where the lines $BC$ and $AM$ meet. Let $R$ be the point symmetrical to $P$ with respect to the line $AM$ and $Q$ the point of intersection of lines $RA$ and $PM$. Let $J$ be the midpoint of $BC$ and $L$ be the intersection point of the line $PJ$ and the line through $A$ parallel to $PR$. Prove that $L, J, A, Q,$ and $K$ all lie on a circle.
2005 Germany Team Selection Test, 2
Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$.
[i]Proposed by Hojoo Lee, Korea[/i]
2020 Regional Olympiad of Mexico Southeast, 2
Let $ABC$ a triangle with $AB<AC$ and let $I$ it´s incenter. Let $\Gamma$ the circumcircle of $\triangle BIC$. $AI$ intersect $\Gamma$ again in $P$. Let $Q$ a point in side $AC$ such that $AB=AQ$ and let $R$ a point in $AB$ with $B$ between $A$ and $R$ such that $AR=AC$. Prove that $IQPR$ is cyclic.
Geometry Mathley 2011-12, 2.4
Let $ABC$ be a triangle inscribed in a circle of radius $O$. The angle bisectors $AD,BE,CF$ are concurrent at $I$. The points $M,N, P$ are respectively on $EF, FD$, and $DE$ such that $IM, IN, IP$ are perpendicular to $BC,CA,AB$ respectively. Prove that the three lines $AM,BN, CP$ are concurrent at a point on $OI$.
Nguyá»…n Minh HÃ
2011 Postal Coaching, 3
Construct a triangle, by straight edge and compass, if the three points where the extensions of the medians intersect the circumcircle of the triangle are given.
2008 Sharygin Geometry Olympiad, 4
(F.Nilov, A.Zaslavsky) Let $ CC_0$ be a median of triangle $ ABC$; the perpendicular bisectors to $ AC$ and $ BC$ intersect $ CC_0$ in points $ A_c$, $ B_c$; $ C_1$ is the common point of $ AA_c$ and $ BB_c$. Points $ A_1$, $ B_1$ are defined similarly. Prove that circle $ A_1B_1C_1$ passes through the circumcenter of triangle $ ABC$.
2011 Middle European Mathematical Olympiad, 6
Let $ABC$ be an acute triangle. Denote by $B_0$ and $C_0$ the feet of the altitudes from vertices $B$ and $C$, respectively. Let $X$ be a point inside the triangle $ABC$ such that the line $BX$ is tangent to the circumcircle of the triangle $AXC_0$ and the line $CX$ is tangent to the circumcircle of the triangle $AXB_0$. Show that the line $AX$ is perpendicular to $BC$.
Kyiv City MO Seniors 2003+ geometry, 2015.11.4
In the acute-angled triangle $ ABC $, the sides $ AB $ and $BC$ have different lengths, and the extension of the median $ BM $ intersects the circumscribed circle at the point $ N $. On this circle we note such a point $ D $ that $ \angle BDH = 90 {} ^ \circ $, where $ H $ is the point of intersection of the altitudes of the triangle $ ABC $. The point $K$ is chosen so that $ ANCK $ is a parallelogram. Prove that the lines $ AC $, $ KH $ and $ BD $ intersect at one point.
(Igor Nagel)
1997 Spain Mathematical Olympiad, 3
For each parabola $y = x^2+ px+q$ intersecting the coordinate axes in three distinct points, consider the circle passing through these points. Prove that all these circles pass through a single point, and find this point.
2010 IFYM, Sozopol, 3
Let $ ABC$ is a triangle, let $ H$ is orthocenter of $ \triangle ABC$, let $ M$ is midpoint of $ BC$. Let $ (d)$ is a line perpendicular with $ HM$ at point $ H$. Let $ (d)$ meet $ AB, AC$ at $ E, F$ respectively. Prove that $ HE \equal{}HF$.
2009 All-Russian Olympiad, 7
Let be given a parallelogram $ ABCD$ and two points $ A_1$, $ C_1$ on its sides $ AB$, $ BC$, respectively. Lines $ AC_1$ and $ CA_1$ meet at $ P$. Assume that the circumcircles of triangles $ AA_1P$ and $ CC_1P$ intersect at the second point $ Q$ inside triangle $ ACD$. Prove that $ \angle PDA \equal{} \angle QBA$.
1986 IMO Longlists, 59
Let $ABCD$ be a convex quadrilateral whose vertices do not lie on a circle. Let $A'B'C'D'$ be a quadrangle such that $A',B', C',D'$ are the centers of the circumcircles of triangles $BCD,ACD,ABD$, and $ABC$. We write $T (ABCD) = A'B'C'D'$. Let us define $A''B''C''D'' = T (A'B'C'D') = T (T (ABCD)).$
[b](a)[/b] Prove that $ABCD$ and $A''B''C''D''$ are similar.
[b](b) [/b]The ratio of similitude depends on the size of the angles of $ABCD$. Determine this ratio.
1995 Austrian-Polish Competition, 5
$ABC$ is an equilateral triangle. $A_{1}, B_{1}, C_{1}$ are the midpoints of $BC, CA, AB$ respectively. $p$ is an arbitrary line through $A_{1}$. $q$ and $r$ are lines parallel to $p$ through $B_{1}$ and $C_{1}$ respectively. $p$ meets the line $B_{1}C_{1}$ at $A_{2}$. Similarly, $q$ meets $C_{1}A_{1}$ at $B_{2}$, and $r$ meets $A_{1}B_{1}$ at $C_{2}$. Show that the lines $AA_{2}, BB_{2}, CC_{2}$ meet at some point $X$, and that $X$ lies on the circumcircle of $ABC$.
2003 Tournament Of Towns, 4
In a triangle $ABC$, let $H$ be the point of intersection of altitudes, $I$ the center of incircle, $O$ the center of circumcircle, $K$ the point where the incircle touches $BC$. Given that $IO$ is parallel to $BC$, prove that $AO$ is parallel to $HK$.
1999 Romania Team Selection Test, 12
Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.
2024 Israel TST, P3
Let $ABCD$ be a parallelogram. Let $\omega_1$ be the circle passing through $D$ tangent to $AB$ at $A$. Let $\omega_2$ be the circle passing through $A$ tangent to $CD$ at $D$. The tangents from $B$ to $\omega_1$ touch it at $A$ and $P$. The tangents from $C$ to $\omega_2$ touch it at $D$ and $Q$. Lines $AP$ and $DQ$ intersect at $X$. The perpendicular bisector of $BC$ intersects $AD$ at $R$.
Show that the circumcircles of triangles $\triangle PQX$, $\triangle BCR$ are concentric.
2003 AMC 10, 17
The number of inches in the perimeter of an equilateral triangle equals the number of square inches in the area of its circumscribed circle. What is the radius, in inches, of the circle?
$ \textbf{(A)}\ \frac{3\sqrt2}{\pi} \qquad
\textbf{(B)}\ \frac{3\sqrt3}{\pi} \qquad
\textbf{(C)}\ \sqrt3 \qquad
\textbf{(D)}\ \frac{6}{\pi} \qquad
\textbf{(E)}\ \sqrt3\pi$
2010 Sharygin Geometry Olympiad, 15
Let $AA_1, BB_1$ and $CC_1$ be the altitudes of an acute-angled triangle $ABC.$ $AA_1$ meets $B_1C_1$ in a point $K.$ The circumcircles of triangles $A_1KC_1$ and $A_1KB_1$ intersect the lines $AB$ and $AC$ for the second time at points $N$ and $L$ respectively. Prove that
[b]a)[/b] The sum of diameters of these two circles is equal to $BC,$
[b] b)[/b] $\frac{A_1N}{BB_1} + \frac{A_1L}{CC_1}=1.$
2009 Postal Coaching, 5
A point $D$ is chosen in the interior of the side $BC$ of an acute triangle $ABC$, and another point $P$ in the interior of the segment $AD$, but not lying on the median through $C$. This median (through $C$) intersects the circumcircle of a triangle $CPD$ at $K(\ne C)$. Prove that the circumcircle of triangle $AKP$ always passes through a fixed point $M(\ne A)$ independent of the choices of the points $D$ and $P.$
2011 Greece Team Selection Test, 4
Let $ABCD$ be a cyclic quadrilateral and let $K,L,M,N,S,T$ the midpoints of $AB, BC, CD, AD, AC, BD$ respectively. Prove that the circumcenters of $KLS, LMT, MNS, NKT$ form a cyclic quadrilateral which is similar to $ABCD$.
2006 Moldova Team Selection Test, 3
Let $a,b,c$ be sides of a triangle and $p$ its semiperimeter. Show that
$a\sqrt{\frac{(p-b)(p-c)}{bc}}+b \sqrt{\frac{(p-c)(p-a)}{ac}}+c\sqrt{\frac{(p-a)(p-b)}{ab}}\geq p$
1997 IMO Shortlist, 8
It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$.
Show that $ AU \equal{} TB \plus{} TC$.
[i]Alternative formulation:[/i]
Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that:
(a) The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AD$ at certain points $ W$ and $ V,$ respectively, and that the lines $ CV$ and $ BW$ meet at a certain point $ T.$
(b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.
2008 China Team Selection Test, 1
Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.