This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1999 Bulgaria National Olympiad, 3

The vertices of a triangle have integer coordinates and one of its sides is of length $\sqrt{n}$, where $n$ is a square-free natural number. Prove that the ratio of the circumradius and the inradius is an irrational number.

2018 Mediterranean Mathematics OIympiad, 2

Let $ABC$ be acute triangle. Let $E$ and $F$ be points on $BC$, such that angles $BAE$ and $FAC$ are equal. Lines $AE$ and $AF$ intersect cirumcircle of $ABC$ at points $M$ and $N$. On rays $AB$ and $AC$ we have points $P$ and $R$, such that angle $PEA$ is equal to angle $B$ and angle $AER$ is equal to angle $C$. Let $L$ be intersection of $AE$ and $PR$ and $D$ be intersection of $BC$ and $LN$. Prove that $$\frac{1}{|MN|}+\frac{1}{|EF|}=\frac{1}{|ED|}.$$

1985 IMO Longlists, 94

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.

2019 Belarus Team Selection Test, 2.2

Let $O$ be the circumcenter and $H$ be the orthocenter of an acute-angled triangle $ABC$. Point $T$ is the midpoint of the segment $AO$. The perpendicular bisector of $AO$ intersects the line $BC$ at point $S$. Prove that the circumcircle of the triangle $AST$ bisects the segment $OH$. [i](M. Berindeanu, RMC 2018 book)[/i]

1999 Turkey Team Selection Test, 2

Let $L$ and $N$ be the mid-points of the diagonals $[AC]$ and $[BD]$ of the cyclic quadrilateral $ABCD$, respectively. If $BD$ is the bisector of the angle $ANC$, then prove that $AC$ is the bisector of the angle $BLD$.

1999 IMO Shortlist, 8

Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

2006 Macedonia National Olympiad, 4

Let $M$ be a point on the smaller arc $A_1A_n$ of the circumcircle of a regular $n$-gon $A_1A_2\ldots A_n$ . $(a)$ If $n$ is even, prove that $\sum_{i=1}^n(-1)^iMA_i^2=0$. $(b)$ If $n$ is odd, prove that $\sum_{i=1}^n(-1)^iMA_i=0$.

2013 Olympic Revenge, 2

Let $ABC$ to be an acute triangle. Also, let $K$ and $L$ to be the two intersections of the perpendicular from $B$ with respect to side $AC$ with the circle of diameter $AC$, with $K$ closer to $B$ than $L$. Analogously, $X$ and $Y$ are the two intersections of the perpendicular from $C$ with respect to side $AB$ with the circle of diamter $AB$, with $X$ closer to $C$ than $Y$. Prove that the intersection of $XL$ and $KY$ lies on $BC$.

2004 Flanders Math Olympiad, 1

[u][b]The author of this posting is : Peter VDD[/b][/u] ____________________________________________________________________ most of us didn't really expect to get this, but here it goes (flanders mathematical olympiad 2004, today) triangle with sides 501m, 668m, 835m how many lines can be draws so that the line halves both area and circumference?

2007 Iran Team Selection Test, 2

Triangle $ABC$ is isosceles ($AB=AC$). From $A$, we draw a line $\ell$ parallel to $BC$. $P,Q$ are on perpendicular bisectors of $AB,AC$ such that $PQ\perp BC$. $M,N$ are points on $\ell$ such that angles $\angle APM$ and $\angle AQN$ are $\frac\pi2$. Prove that \[\frac{1}{AM}+\frac1{AN}\leq\frac2{AB}\]

2021 Brazil EGMO TST, 3

Let $ABC$ be an acute-angled triangle with $AC>AB$, and $\Omega$ is your circumcircle. Let $P$ be the midpoint of the arc $BC$ of $\Omega$ (not containing $A$) and $Q$ be the midpoint of the arc $BC$ of $\Omega$(containing the point $A$). Let $M$ be the foot of perpendicular of $Q$ on the line $AC$. Prove that the circumcircle of $\triangle AMB$ cut the segment $AP$ in your midpoint.

2010 Contests, 2

Let $ I$ be the incentre and $ O$ the circumcentre of a given acute triangle $ ABC$. The incircle is tangent to $ BC$ at $ D$. Assume that $ \angle B < \angle C$ and the segments $ AO$ and $ HD$ are parallel, where $H$ is the orthocentre of triangle $ABC$. Let the intersection of the line $ OD$ and $ AH$ be $ E$. If the midpoint of $ CI$ is $ F$, prove that $ E,F,I,O$ are concyclic.

2014 Turkey EGMO TST, 5

Let $ABC$ be a triangle with circumcircle $\omega$ and let $\omega_A$ be a circle drawn outside $ABC$ and tangent to side $BC$ at $A_1$ and tangent to $\omega$ at $A_2$. Let the circles $\omega_B$ and $\omega_C$ and the points $B_1, B_2, C_1, C_2$ are defined similarly. Prove that if the lines $AA_1, BB_1, CC_1$ are concurrent, then the lines $AA_2, BB_2, CC_2$ are also concurrent.

2009 All-Russian Olympiad, 2

Let be given a triangle $ ABC$ and its internal angle bisector $ BD$ $ (D\in BC)$. The line $ BD$ intersects the circumcircle $ \Omega$ of triangle $ ABC$ at $ B$ and $ E$. Circle $ \omega$ with diameter $ DE$ cuts $ \Omega$ again at $ F$. Prove that $ BF$ is the symmedian line of triangle $ ABC$.

2012 South East Mathematical Olympiad, 2

The incircle $I$ of $\triangle ABC$ is tangent to sides $AB,BC,CA$ at $D,E,F$ respectively. Line $EF$ intersects lines $AI,BI,DI$ at $M,N,K$ respectively. Prove that $DM\cdot KE=DN\cdot KF$.

2010 Balkan MO Shortlist, G5

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

2017 JBMO Shortlist, G3

Consider triangle $ABC$ such that $AB \le AC$. Point $D$ on the arc $BC$ of thecircumcirle of $ABC$ not containing point $A$ and point $E$ on side $BC$ are such that $\angle BAD = \angle CAE < \frac12 \angle BAC$ . Let $S$ be the midpoint of segment $AD$. If $\angle ADE = \angle ABC - \angle ACB$ prove that $\angle BSC = 2 \angle BAC$ .

2019 Belarusian National Olympiad, 10.2

A point $P$ is chosen in the interior of the side $BC$ of triangle $ABC$. The points $D$ and $C$ are symmetric to $P$ with respect to the vertices $B$ and $C$, respectively. The circumcircles of the triangles $ABE$ and $ACD$ intersect at the points $A$ and $X$. The ray $AB$ intersects the segment $XD$ at the point $C_1$ and the ray $AC$ intersects the segment $XE$ at the point $B_1$. Prove that the lines $BC$ and $B_1C_1$ are parallel. [i](A. Voidelevich)[/i]

2018 India IMO Training Camp, 1

Let $ABC$ be a triangle and $AD,BE,CF$ be cevians concurrent at a point $P$. Suppose each of the quadrilaterals $PDCE,PEAF$ and $PFBD$ has both circumcircle and incircle. Prove that $ABC$ is equilateral and $P$ coincides with the center of the triangle.

VII Soros Olympiad 2000 - 01, 10.6

A circle is inscribed in triangle $ABC$. $M$ and $N$ are the points of its tangency with the sides $BC$ and $CA$, respectively. The segment $AM$ intersects $BN$ at point $P$ and the inscribed circle at point $Q$. It is known that $MP = a$, $PQ = b$. Find $AQ$.

2005 Moldova Team Selection Test, 2

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

1999 Finnish National High School Mathematics Competition, 4

Three unit circles have a common point $O.$ The other points of (pairwise) intersection are $A, B$ and $C$. Show that the points $A, B$ and $C$ are located on some unit circle.

2008 Iran MO (3rd Round), 1

Let $ ABC$ be a triangle with $ BC > AC > AB$. Let $ A',B',C'$ be feet of perpendiculars from $ A,B,C$ to $ BC,AC,AB$, such that $ AA' \equal{} BB' \equal{} CC' \equal{} x$. Prove that: a) If $ ABC\sim A'B'C'$ then $ x \equal{} 2r$ b) Prove that if $ A',B'$ and $ C'$ are collinear, then $ x \equal{} R \plus{} d$ or $ x \equal{} R \minus{} d$. (In this problem $ R$ is the radius of circumcircle, $ r$ is radius of incircle and $ d \equal{} OI$)

2018 Dutch BxMO TST, 4

In a non-isosceles triangle $\vartriangle ABC$ we have $\angle BAC = 60^o$. Let $D$ be the intersection of the angular bisector of $\angle BAC$ with side $BC, O$ the centre of the circumcircle of $\vartriangle ABC$ and $E$ the intersection of $AO$ and $BC$. Prove that $\angle AED + \angle ADO = 90^o$.

2015 Saudi Arabia BMO TST, 3

Let $ABC$ be a triangle, $H_a, H_b$ and $H_c$ the feet of its altitudes from $A, B$ and $C$, respectively, $T_a, T_b, T_c$ its touchpoints of the incircle with the sides $BC, CA$ and $AB$, respectively. The circumcircles of triangles $AH_bH_c$ and $AT_bT_c$ intersect again at $A'$. The circumcircles of triangles $BH_cH_a$ and $BT_cT_a$ intersect again at $B'$. The circumcircles of triangles $CH_aH_b$ and $CT_aT_b$ intersect again at $C'$. Prove that the points $A',B',C'$ are collinear. Malik Talbi