This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2009 Canada National Olympiad, 5

A set of points is marked on the plane, with the property that any three marked points can be covered with a disk of radius $1$. Prove that the set of all marked points can be covered with a disk of radius $1$.

2008 Germany Team Selection Test, 2

Let $ ABCD$ be an isosceles trapezium with $ AB \parallel{} CD$ and $ \bar{BC} \equal{} \bar{AD}.$ The parallel to $ AD$ through $ B$ meets the perpendicular to $ AD$ through $ D$ in point $ X.$ The line through $ A$ drawn which is parallel to $ BD$ meets the perpendicular to $ BD$ through $ D$ in point $ Y.$ Prove that points $ C,X,D$ and $ Y$ lie on a common circle.

2021 Harvard-MIT Mathematics Tournament., 9

Let scalene triangle $ABC$ have circumcenter $O$ and incenter $I$. Its incircle $\omega$ is tangent to sides $BC,CA,$ and $AB$ at $D,E,$ and $F$, respectively. Let $P$ be the foot of the altitude from $D$ to $EF$, and let line $DP$ intersect $\omega$ again at $Q \ne D$. The line $OI$ intersects the altitude from $A$ to$ BC$ at $T$. Given that $OI \|BC,$ show that $PQ=PT$.

the 16th XMO, 2

In a triangle $ABC$ , let $O$ be the circumcenter , $AO$ meet $BC$ at $K$ , A circle $\Omega$ with the centre $T$ and the center $K$ and the radius $AK$ meet $AC$ again at $T$ , $D$ is a point on the plain satisfies that $BC$ is the bisector of the angle $\angle ABD$ , let the orthocenter of the triangle $ABC$ and $BCD$ be $M$ and $N$ . If $MN//AC$ than $DT$ is tangent to $\Omega$

India EGMO 2024 TST, 1

Let $ABC$ be a triangle with circumcentre $O$ and centroid $G$. Let $M$ be the midpoint of $BC$ and $N$ the reflection of $M$ across $O$. Prove that $NO = NA$ if and only if $\angle AOG = 90^{\circ}$. [i]Proposed by Pranjal Srivastava[/i]

2002 IMO, 2

The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$

2000 239 Open Mathematical Olympiad, 6

Let ABCD be a convex quadrilateral, and let M and N be the midpoints of its sides AD and BC, respectively. Assume that the points A, B, M, N are concyclic, and the circumcircle of triangle BMC touches the line AB. Show that the circumcircle of triangle AND touches the line AB, too. Darij

Swiss NMO - geometry, 2008.1

Let $ABC$ be a triangle with $\angle BAC \ne 45^o$ and $\angle ABC \ne 135^o$. Let $P$ be the point on the line $AB$ with $\angle CPB = 45^o$. Let $O_1$ and $O_2$ be the centers of the circumcircles of the triangles $ACP$ and $BCP$ respectively. Show that the area of the square $CO_1P O_2$ is equal to the area of the triangle $ABC$.

2007 Princeton University Math Competition, 6

Triangle $ABC$ has $AC = 3$, $BC = 5$, $AB = 7$. A circle is drawn internally tangent to the circumcircle of $ABC$ at $C$, and tangent to $AB$. Let $D$ be its point of tangency with $AB$. Find $BD - DA$. [asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(6cm); real labelscalefactor = 2.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.5, xmax = 7.01, ymin = -3, ymax = 8.02; /* image dimensions */ /* draw figures */ draw(circle((1.37,2.54), 5.17)); draw((-2.62,-0.76)--(-3.53,4.2)); draw((-3.53,4.2)--(5.6,-0.44)); draw((5.6,-0.44)--(-2.62,-0.76)); draw(circle((-0.9,0.48), 2.12)); /* dots and labels */ dot((-2.62,-0.76),dotstyle); label("$C$", (-2.46,-0.51), SW * labelscalefactor); dot((-3.53,4.2),dotstyle); label("$A$", (-3.36,4.46), NW * labelscalefactor); dot((5.6,-0.44),dotstyle); label("$B$", (5.77,-0.17), SE * labelscalefactor); dot((0.08,2.37),dotstyle); label("$D$", (0.24,2.61), SW * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); label("$7$",(-3.36,4.46)--(5.77,-0.17), NE * labelscalefactor); label("$3$",(-3.36,4.46)--(-2.46,-0.51),SW * labelscalefactor); label("$5$",(-2.46,-0.51)--(5.77,-0.17), SE * labelscalefactor); /* end of picture */ [/asy]

2015 Saudi Arabia Pre-TST, 2.1

Let $ABC$ be a triangle and $D$ a point on the side $BC$. The tangent line to the circumcircle of the triangle $ABD$ at the point $D$ intersects the side $AC$ at $E$. The tangent line to the circumcircle of the triangle $ACD$ at the the point $D$ intersects the side $AB$ at $F$. Prove that the point $A$ and the circumcenters of the triangles $ABC$ and $DEF$ are collinear. (Malik Talbi)

2007 IMO Shortlist, 7

Given an acute triangle $ ABC$ with $ \angle B > \angle C$. Point $ I$ is the incenter, and $ R$ the circumradius. Point $ D$ is the foot of the altitude from vertex $ A$. Point $ K$ lies on line $ AD$ such that $ AK \equal{} 2R$, and $ D$ separates $ A$ and $ K$. Lines $ DI$ and $ KI$ meet sides $ AC$ and $ BC$ at $ E,F$ respectively. Let $ IE \equal{} IF$. Prove that $ \angle B\leq 3\angle C$. [i]Author: Davoud Vakili, Iran[/i]

2018 Bulgaria EGMO TST, 3

Let be given a semicircle with diameter $AB$ and center $O$, and a line intersecting the semicircle at $C$ and $D$ and the line $AB$ at $M$ ($MB < MA$, $MD < MC$). The circumcircles of the triangles $AOC$ and $DOB$ meet again at $L$. Prove that $\angle MKO$ is right. [i]L. Kuptsov[/i]

2016 Saudi Arabia IMO TST, 1

Let $ABC$ be a triangle whose incircle $(I)$ touches $BC, CA, AB$ at $D, E, F$, respectively. The line passing through $A$ and parallel to $BC$ cuts $DE, DF$ at $M, N$, respectively. The circumcircle of triangle $DMN$ cuts $(I)$ again at $L$. a) Let $K$ be the intersection of $N E$ and $M F$. Prove that $K$ is the orthocenter of the triangle $DMN$. b) Prove that $A, K, L$ are collinear.

2006 IberoAmerican, 1

In a scalene triangle $ABC$ with $\angle A = 90^\circ,$ the tangent line at $A$ to its circumcircle meets line $BC$ at $M$ and the incircle touches $AC$ at $S$ and $AB$ at $R.$ The lines $RS$ and $BC$ intersect at $N,$ while the lines $AM$ and $SR$ intersect at $U.$ Prove that the triangle $UMN$ is isosceles.

2022 Taiwan TST Round 1, 5

Let $H$ be the orthocenter of a given triangle $ABC$. Let $BH$ and $AC$ meet at a point $E$, and $CH$ and $AB$ meet at $F$. Suppose that $X$ is a point on the line $BC$. Also suppose that the circumcircle of triangle $BEX$ and the line $AB$ intersect again at $Y$, and the circumcircle of triangle $CFX$ and the line $AC$ intersect again at $Z$. Show that the circumcircle of triangle $AYZ$ is tangent to the line $AH$. [i]Proposed by usjl[/i]

2019 All-Russian Olympiad, 3

Circle $\Omega$ with center $O$ is the circumcircle of an acute triangle $\triangle ABC$ with $AB<BC$ and orthocenter $H$. On the line $BO$ there is point $D$ such that $O$ is between $B$ and $D$ and $\angle ADC= \angle ABC$ . The semi-line starting at $H$ and parallel to $BO$ wich intersects segment $AC$ , intersects $\Omega$ at $E$. Prove that $BH=DE$.

2022 IMO Shortlist, G7

Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.

2012 Brazil National Olympiad, 2

$ABC$ is a non-isosceles triangle. $T_A$ is the tangency point of incircle of $ABC$ in the side $BC$ (define $T_B$,$T_C$ analogously). $I_A$ is the ex-center relative to the side BC (define $I_B$,$I_C$ analogously). $X_A$ is the mid-point of $I_BI_C$ (define $X_B$,$X_C$ analogously). Show that $X_AT_A$,$X_BT_B$,$X_CT_C$ meet in a common point, colinear with the incenter and circumcenter of $ABC$.

2006 China Team Selection Test, 1

The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively. Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.

Croatia MO (HMO) - geometry, 2015.7

In an acute-angled triangle $ABC$ is $AB > BC$ , and the points $A_1$ and $C_1$ are the feet of the altitudes of from the vertices $A$ and $C$. Let $D$ be the second intersection of the circumcircles of triangles $ABC$ and $A_1BC_1$ (different of $B$). Let $Z$ be the intersection of the tangents to the circumcircle of the triangle ABC at the points $A$ and $C$ , and let the lines $ZA$ and $A_1C_1$ intersect at the point $X$, and the lines $ZC$ and $A_1C_1$ intersect at the point $Y$. Prove that the point $D$ lies on the circumcircle of the triangle $XYZ$.

2022 Azerbaijan National Mathematical Olympiad, 5

Let $\omega$ be the circumcircle of an acute angled tirangle $ABC.$ The line tangent to $\omega$ at $A$ intersects the line $BC$ at the point $T.$ Let the midpoint of segment $AT$ be $N,$ and the centroid of $\triangle ABC$ be the point $G.$ The other tangent line drawn from $N$ to $\omega$ intersects $\omega$ at the point $L.$ The line $LG$ meets $\omega$ at $S\neq L.$ Prove that $AS\parallel BC.$

2014 Contests, 3

Let $r,R$ and $r_a$ be the radii of the incircle, circumcircle and A-excircle of the triangle $ABC$ with $AC>AB$, respectively. $I,O$ and $J_A$ are the centers of these circles, respectively. Let incircle touches the $BC$ at $D$, for a point $E \in (BD)$ the condition $A(IEJ_A)=2A(IEO)$ holds. Prove that \[ED=AC-AB \iff R=2r+r_a.\]

2005 China Team Selection Test, 3

Find the least positive integer $n$ ($n\geq 3$), such that among any $n$ points (no three are collinear) in the plane, there exist three points which are the vertices of a non-isoscele triangle.

2021 Caucasus Mathematical Olympiad, 4

In an acute triangle $ABC$ let $AH_a$ and $BH_b$ be altitudes. Let $H_aH_b$ intersect the circumcircle of $ABC$ at $P$ and $Q$. Let $A'$ be the reflection of $A$ in $BC$, and let $B'$ be the reflection of $B$ in $CA$. Prove that $A', B'$, $P$, $Q$ are concyclic.

2008 Alexandru Myller, 1

$ O $ is the circumcentre of $ ABC $ and $ A_1\neq A $ is the point on $ AO $ and the circumcircle of $ ABC. $ The centers of mass of $ ABC, A_1BC $ are $ G,G_1, $ respectively, and $ P $ is the intersection of $ AG_1 $ with $ OG. $ Show that $ \frac{PG}{PO}=\frac{2}{3} . $ [i]Gabriel Popa, Paul Georgescu[/i]