This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2011 Singapore MO Open, 1

In the acute-angled non-isosceles triangle $ABC$, $O$ is its circumcenter, $H$ is its orthocenter and $AB>AC$. Let $Q$ be a point on $AC$ such that the extension of $HQ$ meets the extension of $BC$ at the point $P$. Suppose $BD=DP$, where $D$ is the foot of the perpendicular from $A$ onto $BC$. Prove that $\angle ODQ=90^{\circ}$.

2006 China Western Mathematical Olympiad, 3

In $\triangle PBC$, $\angle PBC=60^{o}$, the tangent at point $P$ to the circumcircle$g$ of $\triangle PBC$ intersects with line $CB$ at $A$. Points $D$ and $E$ lie on the line segment $PA$ and $g$ respectively, satisfying $\angle DBE=90^{o}$, $PD=PE$. $BE$ and $PC$ meet at $F$. It is known that lines $AF,BP,CD$ are concurrent. a) Prove that $BF$ bisect $\angle PBC$ b) Find $\tan \angle PCB$

2018 Romanian Master of Mathematics Shortlist, G1

Let $ABC$ be a triangle and let $H$ be the orthogonal projection of $A$ on the line $BC$. Let $K$ be a point on the segment $AH$ such that $AH = 3 KH$. Let $O$ be the circumcenter of triangle $ABC$ and let $M$ and $N$ be the midpoints of sides $AC$ and $AB$ respectively. The lines $KO$ and $MN$ meet at a point $Z$ and the perpendicular at $Z$ to $OK$ meets lines $AB, AC$ at $X$ and $Y$ respectively. Show that $\angle XKY = \angle CKB$. [i]Italy[/i]

Kvant 2019, M2564

Let $ABC$ be an acute-angled triangle with $AC<BC.$ A circle passes through $A$ and $B$ and crosses the segments $AC$ and $BC$ again at $A_1$ and $B_1$ respectively. The circumcircles of $A_1B_1C$ and $ABC$ meet each other at points $P$ and $C.$ The segments $AB_1$ and $A_1B$ intersect at $S.$ Let $Q$ and $R$ be the reflections of $S$ in the lines $CA$ and $CB$ respectively. Prove that the points $P,$ $Q,$ $R,$ and $C$ are concyclic.

2023 Assam Mathematics Olympiad, 17

If in $\bigtriangleup ABC$, $AD$ is the altitude and $AE$ is the diameter of the circumcircle through $A$, then prove that $AB\cdot AC = AD \cdot AE$. Use this result to show that if $ABCD$ is a cyclic quadrilateral then show that $AC \cdot (AB \cdot BC + CD \cdot DA) = BD\cdot (DA\cdot AB + BC \cdot CD)$.

2008 Sharygin Geometry Olympiad, 2

(A.Myakishev) Let triangle $ A_1B_1C_1$ be symmetric to $ ABC$ wrt the incenter of its medial triangle. Prove that the orthocenter of $ A_1B_1C_1$ coincides with the circumcenter of the triangle formed by the excenters of $ ABC$.

2016 Sharygin Geometry Olympiad, 3

Assume that the two triangles $ABC$ and $A'B'C'$ have the common incircle and the common circumcircle. Let a point $P$ lie inside both the triangles. Prove that the sum of the distances from $P$ to the sidelines of triangle $ABC$ is equal to the sum of distances from $P$ to the sidelines of triangle $A'B'C'$.

2007 Kazakhstan National Olympiad, 2

Let $ABC$ be an isosceles triangle with $AC = BC$ and $I$ is the center of the inscribed circle. The point $P$ lies on the circle circumscribed about the triangle $AIB$ and lies inside the triangle $ABC$. Straight lines passing through point $P$ parallel to $CA$ and $CB$ intersect $AB$ at points $D$ and $E$, respectively. The line through $P$ which is parallel to $AB$ intersects $CA$ and $CB$ at points $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ meet at the circumcircle of triangle $ABC$.

2011 Balkan MO Shortlist, G3

Given a triangle $ABC$, let $D$ be the midpoint of the side $AC$ and let $M$ be the point that divides the segment $BD$ in the ratio $1/2$; that is, $MB/MD=1/2$. The rays $AM$ and $CM$ meet the sides $BC$ and $AB$ at points $E$ and $F$, respectively. Assume the two rays perpendicular: $AM\perp CM$. Show that the quadrangle $AFED$ is cyclic if and only if the median from $A$ in triangle $ABC$ meets the line $EF$ at a point situated on the circle $ABC$.

1992 IMO Longlists, 67

In a triangle, a symmedian is a line through a vertex that is symmetric to the median with the respect to the internal bisector (all relative to the same vertex). In the triangle $ABC$, the median $m_a$ meets $BC$ at $A'$ and the circumcircle again at $A_1$. The symmedian $s_a$ meets $BC$ at $M$ and the circumcircle again at $A_2$. Given that the line $A_1A_2$ contains the circumcenter $O$ of the triangle, prove that: [i](a) [/i]$\frac{AA'}{AM} = \frac{b^2+c^2}{2bc} ;$ [i](b) [/i]$1+4b^2c^2 = a^2(b^2+c^2)$

Swiss NMO - geometry, 2011.5

Let $\triangle{ABC}$ be a triangle with circumcircle $\tau$. The tangentlines to $\tau$ through $A$ and $B$ intersect at $T$. The circle through $A$, $B$ and $T$ intersects $BC$ and $AC$ again at $D$ and $E$, respectively; $CT$ and $BE$ intersect at $F$. Suppose $D$ is the midpoint of $BC$. Calculate the ratio $BF:BE$. [i](Swiss Mathematical Olympiad 2011, Final round, problem 5)[/i]

2012 239 Open Mathematical Olympiad, 5

On the hypotenuse $AB$ of the right-angled triangle $ABC$, a point $K$ is chosen such that $BK = BC$. Let $P$ be a point on the perpendicular line from point $K$ to the line $CK$, equidistant from the points $K$ and $B$. Also let $L$ denote the midpoint of the segment $CK$. Prove that line $AP$ is tangent to the circumcircle of the triangle $BLP$.

2013 Korea - Final Round, 4

For a triangle $ ABC $, let $ B_1 ,C_1 $ be the excenters of $ B, C $. Line $B_1 C_1 $ meets with the circumcircle of $ \triangle ABC $ at point $ D (\ne A) $. $ E $ is the point which satisfies $ B_1 E \bot CA $ and $ C_1 E \bot AB $. Let $ w $ be the circumcircle of $ \triangle ADE $. The tangent to the circle $ w $ at $ D $ meets $ AE $ at $ F $. $ G , H $ are the points on $ AE, w $ such that $ DGH \bot AE $. The circumcircle of $ \triangle HGF $ meets $ w $ at point $ I ( \ne H ) $, and $ J $ be the foot of perpendicular from $ D $ to $ AH $. Prove that $ AI $ passes the midpoint of $ DJ $.

1987 IMO Shortlist, 12

Given a nonequilateral triangle $ABC$, the vertices listed counterclockwise, find the locus of the centroids of the equilateral triangles $A'B'C'$ (the vertices listed counterclockwise) for which the triples of points $A,B', C'; A',B, C';$ and $A',B', C$ are collinear. [i]Proposed by Poland.[/i]

2007 Estonia National Olympiad, 3

A circle passing through the endpoints of the leg AB of an isosceles triangle ABC intersects the base BC in point P. A line tangent to the circle in point B intersects the circumcircle of ABC in point Q. Prove that P lies on line AQ if and only if AQ and BC are perpendicular.

2012 IMO Shortlist, G5

Let $ABC$ be a triangle with $\angle BCA=90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK=BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL=AC$. Let $M$ be the point of intersection of $AL$ and $BK$. Show that $MK=ML$. [i]Proposed by Josef Tkadlec, Czech Republic[/i]

2016 Bosnia and Herzegovina Team Selection Test, 5

Let $k$ be a circumcircle of triangle $ABC$ $(AC<BC)$. Also, let $CL$ be an angle bisector of angle $ACB$ $(L \in AB)$, $M$ be a midpoint of arc $AB$ of circle $k$ containing the point $C$, and let $I$ be an incenter of a triangle $ABC$. Circle $k$ cuts line $MI$ at point $K$ and circle with diameter $CI$ at $H$. If the circumcircle of triangle $CLK$ intersects $AB$ again at $T$, prove that $T$, $H$ and $C$ are collinear. .

2010 Contests, 1

Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.

2022 Bosnia and Herzegovina Junior BMO TST, 3

Let $ABC$ be an acute triangle. Tangents on the circumscribed circle of triangle $ABC$ at points $B$ and $C$ intersect at point $T$. Let $D$ and $E$ be a foot of the altitudes from $T$ onto $AB$ and $AC$ and let $M$ be the midpoint of $BC$. Prove: A) Prove that $M$ is the orthocenter of the triangle $ADE$. B) Prove that $TM$ cuts $DE$ in half.

2003 IMO Shortlist, 3

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

2022 Iran MO (3rd Round), 1

Triangle $ABC$ is assumed. The point $T$ is the second intersection of the symmedian of vertex $A$ with the circumcircle of the triangle $ABC$ and the point $D \neq A$ lies on the line $AC$ such that $BA=BD$. The line that at $D$ tangents to the circumcircle of the triangle $ADT$, intersects the circumcircle of the triangle $DCT$ for the second time at $K$. Prove that $\angle BKC = 90^{\circ}$(The symmedian of the vertex $A$, is the reflection of the median of the vertex $A$ through the angle bisector of this vertex).

2018 China Second Round Olympiad, 2

In triangle $\triangle ABC$, $AB<AC$, $M,D,E$ are the midpoints of $BC$, the arcs $BAC$ and $BC$ of the circumcircle of $\triangle ABC$ respectively. The incircle of $\triangle ABC$ touches $AB$ at $F$, $AE$ meets $BC$ at $G$, and the perpendicular to $AB$ at $B$ meets segment $EF$ at $N$. If $BN=EM$, prove that $DF$ is perpendicular to $FG$.

2021 Taiwan TST Round 3, G

Let $ABC$ be a triangle with $AB<AC$, and let $I_a$ be its $A$-excenter. Let $D$ be the projection of $I_a$ to $BC$. Let $X$ be the intersection of $AI_a$ and $BC$, and let $Y,Z$ be the points on $AC,AB$, respectively, such that $X,Y,Z$ are on a line perpendicular to $AI_a$. Let the circumcircle of $AYZ$ intersect $AI_a$ again at $U$. Suppose that the tangent of the circumcircle of $ABC$ at $A$ intersects $BC$ at $T$, and the segment $TU$ intersects the circumcircle of $ABC$ at $V$. Show that $\angle BAV=\angle DAC$. [i]Proposed by usjl.[/i]

2023 Dutch BxMO TST, 4

In a triangle $\triangle ABC$ with $\angle ABC < \angle BCA$, we define $K$ as the excenter with respect to $A$. The lines $AK$ and $BC$ intersect in a point $D$. Let $E$ be the circumcenter of $\triangle BKC$. Prove that \[\frac{1}{|KA|} = \frac{1}{|KD|} + \frac{1}{|KE|}.\]

2012 Albania National Olympiad, 5

Let $ABC$ be a triangle where $AC\neq BC$. Let $P$ be the foot of the altitude taken from $C$ to $AB$; and let $V$ be the orthocentre, $O$ the circumcentre of $ABC$, and $D$ the point of intersection between the radius $OC$ and the side $AB$. The midpoint of $CD$ is $E$. a) Prove that the reflection $V'$ of $V$ in $AB$ is on the circumcircle of the triangle $ABC$. b) In what ratio does the segment $EP$ divide the segment $OV$?