This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 41

1997 IMO Shortlist, 9

Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i \equal{} 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i\plus{}1}$ and $ A_iA_{i\plus{}2}$ (the addition of indices being mod 3). Let $ B_i, i \equal{} 1, 2, 3,$ be the second point of intersection of $ C_{i\plus{}1}$ and $ C_{i\plus{}2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.

2011 Sharygin Geometry Olympiad, 6

In triangle $ABC$ $AA_0$ and $BB_0$ are medians, $AA_1$ and $BB_1$ are altitudes. The circumcircles of triangles $CA_0B_0$ and $CA_1B_1$ meet again in point $M_c$. Points $M_a, M_b$ are defined similarly. Prove that points $M_a, M_b, M_c$ are collinear and lines $AM_a, BM_b, CM_c$ are parallel.

2020 Junior Macedonian National Olympiad, 4

Let $ABC$ be an isosceles triangle with base $AC$. Points $D$ and $E$ are chosen on the sides $AC$ and $BC$, respectively, such that $CD = DE$. Let $H, J,$ and $K$ be the midpoints of $DE, AE,$ and $BD$, respectively. The circumcircle of triangle $DHK$ intersects $AD$ at point $F$, whereas the circumcircle of triangle $HEJ$ intersects $BE$ at $G$. The line through $K$ parallel to $AC$ intersects $AB$ at $I$. Let $IH \cap GF =$ {$M$}. Prove that $J, M,$ and $K$ are collinear points.

1989 IMO Shortlist, 14

A bicentric quadrilateral is one that is both inscribable in and circumscribable about a circle, i.e. both the incircle and circumcircle exists. Show that for such a quadrilateral, the centers of the two associated circles are collinear with the point of intersection of the diagonals.

2022 Kazakhstan National Olympiad, 5

Given a cyclic quadrilateral $ABCD$, let it's diagonals intersect at the point $O$. Take the midpoints of $AD$ and $BC$ as $M$ and $N$ respectively. Take a point $S$ on the arc $AB$ not containing $C$ or $D$ such that $$\angle SMA=\angle SNB$$ Prove that if the diagonals of the quadrilateral made from the lines $SM$, $SN$, $AB$, and $CD$ intersect at the point $T$, then $S$, $O$, and $T$ are collinear.

2021 2nd Memorial "Aleksandar Blazhevski-Cane", 5

Let $\triangle ABC$ be a triangle with circumcenter $O$. The perpendicular bisectors of the segments $OA,OB$ and $OC$ intersect the lines $BC,CA$ and $AB$ at $D,E$ and $F$, respectively. Prove that $D,E,F$ are collinear.

2024 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ be a triangle, $H$ its orthocenter, and $\Gamma$ its circumcircle. Let $J$ be the point diametrically opposite to $A$ on $\Gamma$. The points $D$, $E$ and $F$ are the feet of the altitudes from $A$, $B$ and $C$, respectively. The line $AD$ intersects $\Gamma$ again at $P$. The circumcircle of $EFP$ intersects $\Gamma$ again at $Q$. Let $K$ be the second point of intersection of $JH$ with $\Gamma$. Prove that $K$, $D$ and $Q$ are collinear.

2018 Brazil Team Selection Test, 4

In a triangle $ABC$, points $H, L, K$ are chosen on the sides $AB, BC, AC$, respectively, so that $CH \perp AB$, $HL \parallel AC$ and $HK \parallel BC$. In the triangle $BHL$, let $P, Q$ be the feet of the heights from the vertices $B$ and $H$. In the triangle $AKH$, let $R, S$ be the feet of the heights from the vertices $A$ and $H$. Show that the four points $P, Q, R, S$ are collinear.

2016 Sharygin Geometry Olympiad, 6

A triangle $ABC$ is given. The point $K$ is the base of the external bisector of angle $A$. The point $M$ is the midpoint of the arc $AC$ of the circumcircle. The point $N$ on the bisector of angle $C$ is such that $AN \parallel BM$. Prove that the points $M,N,K$ are collinear. [i](Proposed by Ilya Bogdanov)[/i]

2011 Korea Junior Math Olympiad, 2

Let $ABCD$ be a cyclic quadrilateral inscirbed in circle $O$. Let the tangent to $O$ at $A$ meet $BC$ at $S$, and the tangent to $O$ at $B$ meet $CD$ at $T$. Circle with $S$ as its center and passing $A$ meets $BC$ at $E$, and $AE$ meets $O$ again at $F(\ne A)$. The circle with $T$ as its center and passing $B$ meets $CD$ at $K$. Let $P = BK \cap AC$. Prove that $P,F,D$ are collinear if and only if $AB = AP$.

STEMS 2023 Math Cat A, 5

A convex quadrilateral $ABCD$ is such that $\angle B = \angle D$ and are both acute angles. $E$ is on $AB$ such that $CB = CE$ and $F$ is on $AD$ such that $CF = CD$. If the circumcenter of $CEF$ is $O_1$ and the circumcenter of $ABD$ is $O_2$. Prove that $C,O_1,O_2$ are collinear. [i]Proposed by Kapil Pause[/i]

2011 Indonesia TST, 3

Circle $\omega$ is inscribed in quadrilateral $ABCD$ such that $AB$ and $CD$ are not parallel and intersect at point $O.$ Circle $\omega_1$ touches the side $BC$ at $K$ and touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD;$ circle $\omega_2$ touches side $AD$ at $L$ and touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD.$ If $O,K,$ and $L$ are collinear$,$ then show that the midpoint of side $BC,AD,$ and the center of circle $\omega$ are also collinear.

Mathematical Minds 2024, P8

Let $ABC$ be a triangle with circumcircle $\Omega$, incircle $\omega$, and $A$-excircle $\omega_A$. Let $X$ and $Y$ be the tangency points of $\omega_A$ with $AB$ and $AC$. Lines $XY$ and $BC$ intersect in $T$. The tangent from $T$ to $\omega$ different from $BC$ intersects $\omega$ at $K$. The radical axis of $\omega_A$ and $\Omega$ intersects $BC$ in $S$. The tangent from $S$ to $\omega_A$ different from $BC$ intersects $\omega_A$ at $L$. Prove that $A$, $K$ and $L$ are collinear. [i]Proposed by Ana Boiangiu[/i]

2016 Harvard-MIT Mathematics Tournament, 10

Let $ABC$ be a triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$. Point $P$ lies on $\overline{EF}$ such that $\overline{DP} \perp \overline{EF}$. Ray $BP$ meets $\overline{AC}$ at $Y$ and ray $CP$ meets $\overline{AB}$ at $Z$. Point $Q$ is selected on the circumcircle of $\triangle AYZ$ so that $\overline{AQ} \perp \overline{BC}$. Prove that $P$, $I$, $Q$ are collinear.

1986 IMO Longlists, 44

The circle inscribed in a triangle $ABC$ touches the sides $BC,CA,AB$ in $D,E, F$, respectively, and $X, Y,Z$ are the midpoints of $EF, FD,DE$, respectively. Prove that the centers of the inscribed circle and of the circles around $XYZ$ and $ABC$ are collinear.

2016 JBMO TST - Turkey, 4

In a trapezoid $ABCD$ with $AB<CD$ and $AB \parallel CD$, the diagonals intersect each other at $E$. Let $F$ be the midpoint of the arc $BC$ (not containing the point $E$) of the circumcircle of the triangle $EBC$. The lines $EF$ and $BC$ intersect at $G$. The circumcircle of the triangle $BFD$ intersects the ray $[DA$ at $H$ such that $A \in [HD]$. The circumcircle of the triangle $AHB$ intersects the lines $AC$ and $BD$ at $M$ and $N$, respectively. $BM$ intersects $GH$ at $P$, $GN$ intersects $AC$ at $Q$. Prove that the points $P, Q, D$ are collinear.