This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1930 Eotvos Mathematical Competition, 2

A straight line is drawn across an $8\times 8$ chessboard. It is said to [i]pierce [/i]a square if it passes through an interior point of the square. At most how many of the $64$ squares can this line [i]pierce[/i]?

1955 Moscow Mathematical Olympiad, 295

Which convex domains (figures) on a plane can contain an entire straight line? It is assumed that the figure is flat and does not degenerate into a straight line and is closed, that is, it contains all its boundary points.

1996 Tournament Of Towns, (508) 1

Can one paint four points in the plane red and another four points black so that any three points of the same colour are vertices of a parallelogram whose fourth vertex is a point of the other colour? (NB Vassiliev)

II Soros Olympiad 1995 - 96 (Russia), 9.3

Is there a convex pentagon in which each diagonal is equal to some side?

2020 Ukrainian Geometry Olympiad - December, 3

Given convex $1000$-gon. Inside this polygon, $1020$ points are chosen so that no $3$ of the $2020$ points do not lie on one line. Polygon is cut into triangles so that these triangles have vertices only those specified $2020$ points and each of these points is the vertex of at least one of cutting triangles. How many such triangles were formed?

1990 Romania Team Selection Test, 9

The distance between any two of six given points in the plane is at least $1$. Prove that the distance between some two points is at least $\sqrt{\frac{5+\sqrt5}{2}}$

1996 Vietnam Team Selection Test, 1

In the plane we are given $3 \cdot n$ points ($n>$1) no three collinear, and the distance between any two of them is $\leq 1$. Prove that we can construct $n$ pairwise disjoint triangles such that: The vertex set of these triangles are exactly the given 3n points and the sum of the area of these triangles $< 1/2$.

2006 Austria Beginners' Competition, 3

Let $n$ be an even positive integer. We consider rectangles with integer side lengths $k$ and $k +1$, where $k$ is greater than $\frac{n}{2}$ and at most equal to $n$. Show that for all even positive integers $ n$ the sum of the areas of these rectangles equals $$\frac{n(n + 2)(7n + 4)}{24}.$$

Kvant 2022, M2691

There are $N{}$ points marked on the plane. Any three of them form a triangle, the values of the angles of which in are expressed in natural numbers (in degrees). What is the maximum $N{}$ for which this is possible? [i]Proposed by E. Bakaev[/i]

2011 May Olympiad, 4

Using several white edge cubes of side $ 1$, Guille builds a large cube. Then he chooses $4$ faces of the big cube and paints them red. Finally, he takes apart the large cube and observe that the cubes with at least a face painted red is $431$. Find the number of cubes that he used to assemble the large cube. Analyze all the possibilities.

2016 Latvia Baltic Way TST, 11

Is it possible to cut a square with side $\sqrt{2015}$ into no more than five pieces so that these pieces can be rearranged into a rectangle with sides of integer length? (The cuts should be made using straight lines, and flipping of the pieces is disallowed.)

2001 Swedish Mathematical Competition, 6

A chessboard is covered with $32$ dominos. Each domino covers two adjacent squares. Show that the number of horizontal dominos with a white square on the left equals the number with a white square on the right.

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

2005 Switzerland - Final Round, 5

Tweaking a convex $n$-gon means the following: choose two adjacent sides $AB$ and $BC$ and replaces them with the line segment $AM$, $MN$, $NC$, where $M \in AB$ and $N \in BC$ are arbitrary points inside these segments. In other words, you cut off a corner and get an $(n+1)$-corner. Starting from a regular hexagon $P_6$ with area $1$, by continuous Tweaks a sequence $P_6,P_7,P_8, ...$ convex polygons. Show that Area of $​​P_n$ for all $n\ge 6$ greater than $\frac1 2$ is, regardless of how tweaks takes place.

2004 Estonia Team Selection Test, 3

For which natural number $n$ is it possible to draw $n$ line segments between vertices of a regular $2n$-gon so that every vertex is an endpoint for exactly one segment and these segments have pairwise different lengths?

1991 Tournament Of Towns, (297) 4

Five points are chosen on the sphere, no three of them lying on a great circle (a great circle is the intersection of the sphere with some plane passing through the sphere’s centre). Two great circles not containing any of the chosen points are called equivalent if one of them can be moved to the other without passing through any chosen points. (a) How many nonequivalent great circles not containing any chosen points can be drawn on the sphere? (b) Answer the same problem, but with $n$ chosen points.

2018 Estonia Team Selection Test, 11

Let $k$ be a positive integer. Find all positive integers $n$, such that it is possible to mark $n$ points on the sides of a triangle (different from its vertices) and connect some of them with a line in such a way that the following conditions are satisfied: 1) there is at least $1$ marked point on each side, 2) for each pair of points $X$ and $Y$ marked on different sides, on the third side there exist exactly $k$ marked points which are connected to both $X$ and $Y$ and exactly k points which are connected to neither $X$ nor $Y$

1969 IMO Shortlist, 60

$(SWE 3)$ Find the natural number $n$ with the following properties: $(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$ $(2)$ $n$ is the smallest integer with the above property.

1989 Balkan MO, 2

Let $\overline{a_{n}a_{n-1}\ldots a_{1}a_{0}}$ be the decimal representation of a prime positive integer such that $n>1$ and $a_{n}>1$. Prove that the polynomial $P(x)=a_{n}x^{n}+\ldots +a_{1}x+a_{0}$ cannot be written as a product of two non-constant integer polynomials.

2001 China Second Round Olympiad, 3

An $m\times n(m,n\in \mathbb{N}^*)$ rectangle is divided into some smaller squares. The sides of each square are all parallel to the corresponding sides of the rectangle, and the length of each side is integer. Determine the minimum of the sum of the sides of these squares.

2001 Estonia Team Selection Test, 1

Consider on the coordinate plane all rectangles whose (i) vertices have integer coordinates; (ii) edges are parallel to coordinate axes; (iii) area is $2^k$, where $k = 0,1,2....$ Is it possible to color all points with integer coordinates in two colors so that no such rectangle has all its vertices of the same color?

TNO 2023 Senior, 6

The points inside a circle \( \Gamma \) are painted with \( n \geq 1 \) colors. A color is said to be dense in a circle \( \Omega \) if every circle contained within \( \Omega \) has points of that color in its interior. Prove that there exists at least one color that is dense in some circle contained within \( \Gamma \).

2019 PUMaC Geometry B, 7

Let two ants stand on the perimeter of a regular $2019$-gon of unit side length. One of them stands on a vertex and the other one is on the midpoint of the opposite side. They start walking along the perimeter at the same speed counterclockwise. The locus of their midpoints traces out a figure $P$ in the plane with $N$ corners. Let the area enclosed by the convex hull of $P$ be $\tfrac{A}{B}\tfrac{\sin^m\left(\tfrac{\pi}{4038}\right)}{\tan\left(\tfrac{\pi}{2019}\right)}$, where $A$ and $B$ are coprime positive integers, and $m$ is the smallest possible positive integer such that this formula holds. Find $A+B+m+N$. [i]Note:[/i] The [i]convex hull[/i] of a figure $P$ is the convex polygon of smallest area which contains $P$.

2001 All-Russian Olympiad Regional Round, 9.4

The target is a triangle divided by three families of parallel lines into $100$ equal regular triangles with single sides. A sniper shoots at a target. He aims at triangle and hits either it or one of the sides adjacent to it. He sees the results of his shooting and can choose when stop shooting. What is the greatest number of triangles he can with a guarantee of hitting five times?

1965 Poland - Second Round, 5

Prove that a square can be divided into any number greater than 5 squares, but cannot be divided into 5 squares.