Found problems: 1704
2001 Junior Balkan Team Selection Tests - Moldova, 1
On a circle we consider a set $M$ consisting of $n$ ($n \ge 3$) points, of which only one is colored red. Determine of which polygons inscribed in a circle having the vertices in the set $M$ are more: those that contain the red dot or those that do not contain those points? How many more are there than others?
2022 Durer Math Competition (First Round), 1
Dorothy organized a party for the birthday of Duck Mom and she also prepared a cylindershaped cake. Since she was originally expecting to have $15$ guests, she divided the top of the cake into this many equal circular sectors, marking where the cuts need to be made. Just for fun Dorothy’s brother Donald split the top of the cake into $10$ equal circular sectors in such a way that some of the radii that he marked coincided with Dorothy’s original markings. Just
before the arrival of the guests Douglas cut the cake according to all markings, and then he placed the cake into the fridge. This way they forgot about the cake and only got to eating it when only $6$ of them remained. Is it possible for them to divide the cake into $6$ equal parts without making any further cuts?
1999 Tournament Of Towns, 6
On a large chessboard $2n$ of its $1 \times 1$ squares have been marked such thar the rook (which moves only horizontally or vertically) can visit all the marked squares without jumpin over any unmarked ones. Prove that the figure consisting of all the marked squares can be cut into rectangles.
(A Shapovalov)
1978 All Soviet Union Mathematical Olympiad, 265
Given a simple number $p>3$. Consider the set $M$ of the pairs $(x,y)$ with the integer coordinates in the plane such that $0 \le x < p, 0 \le y < p$. Prove that it is possible to mark $p$ points of $M$ such that not a triple of marked points will belong to one line and there will be no parallelogram with the vertices in the marked points.
2011 Princeton University Math Competition, B1
If the plane is partitioned into a grid of congruent equilateral triangles, prove that there does not exist a square with vertices at the vertices of this grid.
2016 Kazakhstan National Olympiad, 5
$101$ blue and $101$ red points are selected on the plane, and no three lie on one straight line. The sum of the pairwise distances between the red points is $1$ (that is, the sum of the lengths of the segments with ends at red points), the sum of the pairwise distances between the blue ones is also $1$, and the sum of the lengths of the segments with the ends of different colors is $400$. Prove that you can draw a straight line separating everything red dots from all blue ones.
2023 Flanders Math Olympiad, 3
The vertices of a regular $4$-gon, $6$-gon and $12$-goncan be brought together in one point to form a complete angle of $360^o$ (see figure). [center][img]https://cdn.artofproblemsolving.com/attachments/b/1/e9245179b7e0f5acb98b226bdc6db87fd72ad5.png[/img] [/center]
Determine all triples $a, b, c \in N$ with $a < b < c$ for which the angles of a regular $a$-gon, $b$-gon and $c$-gon together also form $360^o$ .
1995 Rioplatense Mathematical Olympiad, Level 3, 3
Given a regular tetrahedron with edge $a$, its edges are divided into $n$ equal segments, thus obtaining $n + 1$ points: $2$ at the ends and $n - 1$ inside. The following set of planes is considered:
$\bullet$ those that contain the faces of the tetrahedron, and
$\bullet$ each of the planes parallel to a face of the tetrahedron and containing at least one of the points determined above.
Now all those points $P$ that belong (simultaneously) to four planes of that set are considered. Determine the smallest positive natural $n$ so that among those points $P$ the eight vertices of a square-based rectangular parallelepiped can be chosen.
2018 Estonia Team Selection Test, 1
There are distinct points $O, A, B, K_1, . . . , K_n, L_1, . . . , L_n$ on a plane such that no three points are collinear. The open line segments $K_1L_1, . . . , K_nL_n$ are coloured red, other points on the plane are left uncoloured. An allowed path from point $O$ to point $X$ is a polygonal chain with first and last vertices at points $O$ and $X$, containing no red points. For example, for $n = 1$, and $K_1 = (-1, 0)$, $L_1 = (1, 0)$, $O = (0,-1)$, and $X = (0,1)$, $OK_1X$ and $OL_1X$ are examples of allowed paths from $O$ to $X$, there are no shorter allowed paths. Find the least positive integer n such that it is possible that the first vertex that is not $O$ on any shortest possible allowed path from $O$ to $A$ is closer to $B$ than to $A$, and the first vertex that is not $O$ on any shortest possible allowed path from $O$ to $B$ is closer to $A$ than to $B$.
2022 Spain Mathematical Olympiad, 1
The six-pointed star in the figure is regular: all interior angles of the small triangles are equal. Each of the thirteen marked points is assigned a color, green or red. Prove that there are always three points of the same color, which are the vertices of an equilateral triangle.
2024 Taiwan Mathematics Olympiad, 5
Several triangles are [b]intersecting[/b] if any two of them have non-empty intersections.
Show that for any two finite collections of intersecting triangles, there exists a line that intersects all the triangles.
[i]
Proposed by usjl[/i]
1987 Spain Mathematical Olympiad, 3
A given triangle is divided into $n$ triangles in such a way that any line segment which is a side of a tiling triangle is either a side of another tiling triangle or a side of the given triangle. Let $s$ be the total number of sides and $v$ be the total number of vertices of the tiling triangles (counted without multiplicity).
(a) Show that if $n$ is odd then such divisions are possible, but each of them has the same number $v$ of vertices and the same number $s$ of sides. Express $v$ and $s$ as functions of $n$.
(b) Show that, for $n$ even, no such tiling is possible
1995 IMO Shortlist, 3
Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} \plus{} r_{j} \plus{} r_{k}$.
1971 IMO, 2
Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.
1960 Putnam, A2
Show that if three points are inside are closed square of unit side, then some pair of them are within $\sqrt{6}-\sqrt{2}$ units apart.
2015 APMO, 4
Let $n$ be a positive integer. Consider $2n$ distinct lines on the plane, no two of which are parallel. Of the $2n$ lines, $n$ are colored blue, the other $n$ are colored red. Let $\mathcal{B}$ be the set of all points on the plane that lie on at least one blue line, and $\mathcal{R}$ the set of all points on the plane that lie on at least one red line. Prove that there exists a circle that intersects $\mathcal{B}$ in exactly $2n - 1$ points, and also intersects $\mathcal{R}$ in exactly $2n - 1$ points.
[i]Proposed by Pakawut Jiradilok and Warut Suksompong, Thailand[/i]
2016 IFYM, Sozopol, 1
The numbers from 1 to $n$ are arranged in some way on a circle. What’s the smallest value of $n$, for which no matter how the numbers are arranged there exist ten consecutively increasing numbers $A_1<A_2<A_3…<A_{10}$ such that $A_1 A_2…A_{10}$ is a convex decagon?
2009 Tournament Of Towns, 2
Several points on the plane are given, no three of them lie on the same line. Some of these points are connected by line segments. Assume that any line that does not pass through any of these points intersects an even number of these segments. Prove that from each point exits an even number of the segments.
2015 Argentina National Olympiad, 4
An segment $S$ of length $50$ is covered by several segments of length $1$ , all of them contained in $S$. If any of these unit segments were removed, $S$ would no longer be completely covered. Find the maximum number of unit segments with this property.
Clarification: Assume that the segments include their endpoints.
2003 All-Russian Olympiad Regional Round, 8.4
Prove that an arbitrary triangle can be cut into three polygons, one of which must be an obtuse triangle, so that they can then be folded into a rectangle. (Turning over parts is possible).
2004 Germany Team Selection Test, 2
Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles.
[i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]
1965 Dutch Mathematical Olympiad, 3
Given are the points $A$ and $B$ in the plane. If $x$ is a straight line is in that plane, and $x$ does not coincide with the perpendicular bisectror of $AB$, then denote the number of points $C$ located at $x$ such that $\vartriangle ABC$ is isosceles, as the "weight of the line $x$”.
Prove that the weight of any line $x$ is at most $5$ and determine the set of points $P$ which has a line with weight $1$, but none with weight $0$.
1987 Austrian-Polish Competition, 5
The Euclidian three-dimensional space has been partitioned into three nonempty sets $A_1,A_2,A_3$. Show that one of these sets contains, for each $d > 0$, a pair of points at mutual distance $d$.
1978 Polish MO Finals, 1
A ray of light reflects from the rays of a given angle. A ray that enters the vertex of the angle is absorbed. Prove that there is a natural number $n$ such that any ray can reflect at most $n$ times
1982 IMO Longlists, 48
Given a finite sequence of complex numbers $c_1, c_2, \ldots , c_n$, show that there exists an integer $k$ ($1 \leq k \leq n$) such that for every finite sequence $a_1, a_2, \ldots, a_n$ of real numbers with $1 \geq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$, the following inequality holds:
\[\left| \sum_{m=1}^n a_mc_m \right| \leq \left| \sum_{m=1}^k c_m \right|.\]