This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1998 Estonia National Olympiad, 5

A circle is divided into $n$ equal arcs by $n$ points. Assume that, no matter how we color the $n$ points in two colors, there always exists an axis of symmetry of the set of points such that any two of the $n$ points which are symmetric with respect to that axis have the same color. Find all possible values of $n$.

2008 Brazil Team Selection Test, 4

Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2024 Iberoamerican, 3

Let $O$ be a fixed point in the plane. We have $2024$ red points, $2024$ yellow points and $2024$ green points in the plane, where there isn't any three colinear points and all points are distinct from $O$. It is known that for any two colors, the convex hull of the points that are from any of those two colors contains $O$ (it maybe contain it in it's interior or in a side of it). We say that a red point, a yellow point and a green point make a [i]bolivian[/i] triangle if said triangle contains $O$ in its interior or in one of its sides. Determine the greatest positive integer $k$ such that, no matter how such points are located, there is always at least $k$ [i]bolivian[/i] triangles.

1997 Czech And Slovak Olympiad IIIA, 3

A tetrahedron $ABCD$ is divided into five polyhedra so that each face of the tetrahedron is a face of (exactly) one polyhedron, and that the intersection of any two of the polyhedra is either a common vertex, a common edge, or a common face. What is the smallest possible sum of the numbers of faces of the five polyhedra?

1977 All Soviet Union Mathematical Olympiad, 249

Given $1000$ squares on the plane with their sides parallel to the coordinate axes. Let $M$ be the set of those squares centres. Prove that you can mark some squares in such a way, that every point of $M$ will be contained not less than in one and not more than in four marked squares

1969 Polish MO Finals, 6

Given a set $n$ of points in the plane that are not contained in a single straight line. Prove that there exists a circle passing through at least three of these points, inside which there are none of the remaining points of the set.

2022 Flanders Math Olympiad, 2

A domino is a rectangle whose length is twice its width. Any square can be divided into seven dominoes, for example as shown in the figure below. [img]https://cdn.artofproblemsolving.com/attachments/7/6/c055d8d2f6b7c24d38ded7305446721e193203.png[/img] a) Show that you can divide a square into $n$ dominoes for all $n \ge 5$. b) Show that you cannot divide a square into three or four dominoes.

1989 Austrian-Polish Competition, 2

Each point of the plane is colored by one of the two colors. Show that there exists an equilateral triangle with monochromatic vertices.

2016 IFYM, Sozopol, 1

We are given a set $P$ of points and a set $L$ of straight lines. At the beginning there are 4 points, no three of which are collinear, and $L=\emptyset $. Two players are taking turns adding one or two lines to $L$, where each of these lines has to pass through at least two of the points in $P$. After that all intersection points of the lines in $L$ are added to $P$, if they are not already part of it. A player wins, if after his turn there are three collinear points from $P$, which lie on a line that isn’t from $L$. Find who of the two players has a winning strategy.

1985 Tournament Of Towns, (094) 2

The radius $OM$ of a circle rotates uniformly at a rate of $360/n$ degrees per second , where $n$ is a positive integer . The initial radius is $OM_0$. After $1$ second the radius is $OM_1$ , after two more seconds (i.e. after three seconds altogether) the radius is $OM_2$ , after $3$ more seconds (after $6$ seconds altogether) the radius is $OM_3$, ..., after $n - 1$ more seconds its position is $OM_{n-1}$. For which values of $n$ do the points $M_0, M_1 , ..., M_{n-1}$ divide the circle into $n$ equal arcs? (a) Is it true that the powers of $2$ are such values? (b) Does there exist such a value which is not a power of $2$? (V. V. Proizvolov , Moscow)

1993 Czech And Slovak Olympiad IIIA, 6

Show that there exists a tetrahedron which can be partitioned into eight congruent tetrahedra, each of which is similar to the original one.

I Soros Olympiad 1994-95 (Rus + Ukr), 10.9

Prove that for all natural $n\ge 6 000$ any convex $1994$-gon can be cut into $n$ such quadrilaterals thata circle can be circumscribed around each of them

2017 Junior Balkan Team Selection Tests - Romania, 4

Two right isosceles triangles of legs equal to $1$ are glued together to form either an isosceles triangle - called [i]t-shape[/i] - of leg $\sqrt2$, or a parallelogram - called [i]p-shape[/i] - of sides $1$ and $\sqrt2$. Find all integers $m$ and $n, m, n \ge 2$, such that a rectangle $m \times n$ can be tilled with t-shapes and p-shapes.

2015 Lusophon Mathematical Olympiad, 3

In the center of a square is a rabbit and at each vertex of this even square, a wolf. The wolves only move along the sides of the square and the rabbit moves freely in the plane. Knowing that the rabbit move at a speed of $10$ km / h and that the wolves move to a maximum speed of $14$ km / h, determine if there is a strategy for the rabbit to leave the square without being caught by the wolves.

1977 Poland - Second Round, 6

What is the greatest number of parts into which the plane can be cut by the edges of $ n $ squares?

VI Soros Olympiad 1999 - 2000 (Russia), 9.4

A single segment contains several non-intersecting red segments, the total length of which is greater than $0.5$. Are there necessarily two red dots at the distance: a) $1/99$ b) $1/100$ ?

2007 Swedish Mathematical Competition, 5

Anna and Brian play a game where they put the domino tiles (of size $2 \times 1$) in a boards composed of $n \times 1$ boxes. Tiles must be placed so that they cover exactly two boxes. Players take turnslaying each tile and the one laying last tile wins. They play once for each $n$, where $n = 2, 3,\dots,2007$. Show that Anna wins at least $1505$ of the games if she always starts first and they both always play optimally, ie if they do their best to win in every move.

1990 Mexico National Olympiad, 5

Given $19$ points in the plane with integer coordinates, no three collinear, show that we can always find three points whose centroid has integer coordinates.

1988 Spain Mathematical Olympiad, 2

We choose $n > 3$ points on a circle and number them $1$ to $ n$ in some order. We say that two non-adjacent points $A$ and $B$ are related if, in one of the arcs $AB$, all the points are marked with numbers less than those at $A,B$. Show that the number of pairs of related points is exactly $n-3$.

2019 Saint Petersburg Mathematical Olympiad, 6

Is it possible to arrange everything in all cells of an infinite checkered plane all natural numbers (once) so that for each $n$ in each square $n \times n$ the sum of the numbers is a multiple of $n$?

2011 QEDMO 8th, 1

A $T$-tetromino is a non-convex as well as non-rotationally symmetrical tetromino, which has a maximum number of outside corners (popularly also "Tetris Stone "called). Find all natural numbers $n$ for which, a $n \times n$ chessboard is found that can be covered only with such $T$-tetrominos.

2010 Oral Moscow Geometry Olympiad, 1

Convex $n$-gon $P$, where $n> 3$, is cut into equal triangles by diagonals that do not intersect inside it. What are the possible values of $n$ if the $n$-gon is cyclic?

2004 Iran MO (3rd Round), 26

Finitely many points are given on the surface of a sphere, such that every four of them lie on the surface of open hemisphere. Prove that all points lie on the surface of an open hemisphere.

2023 SG Originals, Q1

Two straight lines divide a square of side length $1$ into four regions. Show that at least one of the regions has a perimeter greater than or equal to $2$. [i]Proposed by Dylan Toh[/i]

2007 Pre-Preparation Course Examination, 2

a) Prove that center of smallest sphere containing a finite subset of $\mathbb R^{n}$ is inside convex hull of the point that lie on sphere. b) $A$ is a finite subset of $\mathbb R^{n}$, and distance of every two points of $A$ is not larger than 1. Find radius of the largest sphere containing $A$.