This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2017 Caucasus Mathematical Olympiad, 8

$100$ points are marked in the plane so that no three of marked points are collinear. One of marked points is red, and the others are blue. A triangle with vertices at blue points is called [i]good[/i] if the red point lies inside it. Determine if it is possible that the number of good triangles is not less than the half of the total number of traingles with vertices at blue points.

1985 Czech And Slovak Olympiad IIIA, 1

A regular $1985$-gon is given in the plane. Let's pass a straight line through each side of it. Determine the number of parts into which these lines divide the plane.

1982 Poland - Second Round, 2

The plane is covered with circles in such a way that the center of each circle does not belong to any other circle. Prove that each point of the plane belongs to at most five circles.

2023 Philippine MO, 8

Let $\mathcal{S}$ be the set of all points in the plane. Find all functions $f : \mathcal{S} \rightarrow \mathbb{R}$ such that for all nondegenerate triangles $ABC$ with orthocenter $H$, if $f(A) \leq f(B) \leq f(C)$, then $$f(A) + f(C) = f(B) + f(H).$$

2009 Regional Olympiad of Mexico Center Zone, 3

An equilateral triangle $ABC$ has sides of length $n$, a positive integer. Divide the triangle into equilateral triangles of length $ 1$, drawing parallel lines (at distance $ 1$) to all sides of the triangle. A path is a continuous path, starting at the triangle with vertex $A$ and always crossing from one small triangle to another on the side that both triangles share, in such a way that it never passes through a small triangle twice. Find the maximum number of triangles that can be visited.

2015 Thailand Mathematical Olympiad, 3

Let $P = \{(x, y) | x, y \in \{0, 1, 2,... , 2015\}\}$ be a set of points on the plane. Straight wires of unit length are placed to connect points in $P$ so that each piece of wire connects exactly two points in $P$, and each point in $P$ is an endpoint of exactly one wire. Prove that no matter how the wires are placed, it is always possible to draw a straight line parallel to either the horizontal or vertical axis passing through midpoints of at least $506$ pieces of wire.

2024 IMC, 5

Let $n>d$ be positive integers. Choose $n$ independent, uniformly distributed random points $x_1,\dots,x_n$ in the unit ball $B \subset \mathbb{R}^d$ centered at the origin. For a point $p \in B$ denote by $f(p)$ the probability that the convex hull of $x_1,\dots,x_n$ contains $p$. Prove that if $p,q \in B$ and the distance of $p$ from the origin is smaller than the distance of $q$ from the origin, then $f(p) \ge f(q)$.

2017 Thailand Mathematical Olympiad, 10

A lattice point is defined as a point on the plane with integer coordinates. Show that for all positive integers $n$, there is a circle on the plane with exactly n lattice points in its interior (not including its boundary).

2009 Junior Balkan Team Selection Tests - Romania, 3

The plane is divided into a net of equilateral triangles of side length $1$, with disjoint interiors. A checker is placed initialy inside a triangle. The checker can be moved into another triangle sharing a common vertex (with the triangle hosting the checker) and having the opposite sides (with respect to this vertex) parallel. A path consists in a finite sequence of moves. Prove that there is no path between two triangles sharing a common side.

2014 NZMOC Camp Selection Problems, 4

Given $2014$ points in the plane, no three of which are collinear, what is the minimum number of line segments that can be drawn connecting pairs of points in such a way that adding a single additional line segment of the same sort will always produce a triangle of three connected points?

2017 Balkan MO Shortlist, C6

What is the least positive integer $k$ such that, in every convex $101$-gon, the sum of any $k$ diagonals is greater than or equal to the sum of the remaining diagonals?

2013 Greece JBMO TST, 2

Consider $n$ different points lying on a circle, such that there are not three chords defined by that point that pass through the same interior point of the circle. a) Find the value of $n$, if the numbers of triangles that are defined using $3$ of the n points is equal to $2n$ b) Find the value of $n$, if the numbers of the intersection points of the chords that are interior to the circle is equal to $5n$.

2002 Junior Balkan Team Selection Tests - Romania, 3

A given equilateral triangle of side $10$ is divided into $100$ equilateral triangles of side $1$ by drawing parallel lines to the sides of the original triangle. Find the number of equilateral triangles, having vertices in the intersection points of parallel lines whose sides lie on the parallel lines.

2001 All-Russian Olympiad Regional Round, 10.1

The lengths of the sides of the polygon are $a_1$, $a_2$,. $..$ ,$a_n$. The square trinomial $f(x)$ is such that $f(a_1) = f(a_2 +...+ a_n)$. Prove that if $A$ is the sum of the lengths of several sides of a polygon, $B$ is the sum of the lengths of its remaining sides, then $f(A) = f(B)$.

1986 Czech And Slovak Olympiad IIIA, 3

Prove that the entire space can be partitioned into “crosses” made of seven unit cubes as shown in the picture. [img]https://cdn.artofproblemsolving.com/attachments/2/b/77c4a4309170e8303af321daceccc4010da334.png[/img]

1968 Poland - Second Round, 6

On the plane are chosen $n \ge 3$ points, not all on the same line. Drawing all lines passing through two of these points one obtains k different lines. Prove that $k \ge n$.

2023 Sharygin Geometry Olympiad, 9.2

Can a regular triangle be placed inside a regular hexagon in such a way that all vertices of the triangle were seen from each vertex of the hexagon? (Point $A$ is seen from $B$, if the segment $AB$ dots not contain internal points of the triangle.)

1980 Tournament Of Towns, (006) 3

We are given $30$ non-zero vectors in $3$ dimensional space. Prove that among these there are two such that the angle between them is less than $45^o$.

1995 North Macedonia National Olympiad, 4

On a $ 30 \times30 $ square board or placed figures of shape 1 (of 5 squares) (in all four possible positions) and shaped figures of shape 2 (of 4 squares) . The figures do not overlap, they do not pass through the edges of the board and the squares of which they are drawn lie exactly through the squares of the board. a) Prove that the board can be fully covered using $100$ figures of both shapes. b) Prove that if there are already $50$ shaped figures on the board of shape 1, then at least one more figure can be placed on the board. c) Prove that if there are already $28$ figures of both shapes on the board then at least one more figure of both shapes can be placed on the board. [img]https://cdn.artofproblemsolving.com/attachments/3/f/f20d5a91d61557156edf203ff43acac461d9df.png[/img]

2011 Romanian Masters In Mathematics, 2

For every $n\geq 3$, determine all the configurations of $n$ distinct points $X_1,X_2,\ldots,X_n$ in the plane, with the property that for any pair of distinct points $X_i$, $X_j$ there exists a permutation $\sigma$ of the integers $\{1,\ldots,n\}$, such that $\textrm{d}(X_i,X_k) = \textrm{d}(X_j,X_{\sigma(k)})$ for all $1\leq k \leq n$. (We write $\textrm{d}(X,Y)$ to denote the distance between points $X$ and $Y$.) [i](United Kingdom) Luke Betts[/i]

2021 Israel TST, 2

Let $n>1$ be an integer. Hippo chooses a list of $n$ points in the plane $P_1, \dots, P_n$; some of these points may coincide, but not all of them can be identical. After this, Wombat picks a point from the list $X$ and measures the distances from it to the other $n-1$ points in the list. The average of the resulting $n-1$ numbers will be denoted $m(X)$. Find all values of $n$ for which Hippo can prepare the list in such a way, that for any point $X$ Wombat may pick, he can point to a point $Y$ from the list such that $XY=m(X)$.

1955 Moscow Mathematical Olympiad, 306

Cut a rectangle into $18$ rectangles so that no two adjacent ones form a rectangle.

2012 Swedish Mathematical Competition, 5

The vertices of a regular $13$-gon are colored in three different colors. Show that there are three vertices which have the same color and are also the vertices of an isosceles triangle.

1982 Kurschak Competition, 1

A cube of integral dimensions is given in space so that all four vertices of one of the faces are lattice points. Prove that the other four vertices are also lattice points.

1973 All Soviet Union Mathematical Olympiad, 176

Given $n$ points, $n > 4$. Prove that tou can connect them with arrows, in such a way, that you can reach every point from every other point, having passed through one or two arrows. (You can connect every pair with one arrow only, and move along the arrow in one direction only.)