This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1955 Moscow Mathematical Olympiad, 291

Find all rectangles that can be cut into $13$ equal squares.

1991 China Team Selection Test, 3

$5$ points are given in the plane, any three non-collinear and any four non-concyclic. If three points determine a circle that has one of the remaining points inside it and the other one outside it, then the circle is said to be [i]good[/i]. Let the number of good circles be $n$; find all possible values of $n$.

1991 Romania Team Selection Test, 6

Let $n \ge 3$ be an integer. A finite number of disjoint arcs with the total sum of length $1 -\frac{1}{n}$ are given on a circle of perimeter $1$. Prove that there is a regular $n$-gon whose all vertices lie on the considered arcs

2019 BAMO, D/2

Initially, all the squares of an $8\times 8$ grid are white. You start by choosing one of the squares and coloring it gray. After that, you may color additional squares gray one at a time, but you may only color a square gray if it has exactly $1$ or $3$ gray neighbors at that moment (where a neighbor is a square sharing an edge). For example, the configuration below (of a smaller $3\times 4$ grid) shows a situation where six squares have been colored gray so far. The squares that can be colored at the next step are marked with a dot. Is it possible to color all the squares gray? Justify your answer. [img]https://cdn.artofproblemsolving.com/attachments/1/c/d50ab269f481e4e516dace06a991e6b37f2a85.png[/img]

May Olympiad L2 - geometry, 2005.1

The enemy ship has landed on a $9\times 9$ board that covers exactly $5$ squares of the board, like this: [img]https://cdn.artofproblemsolving.com/attachments/2/4/ae5aa95f5bb5e113fd5e25931a2bf8eb872dbe.png[/img] The ship is invisible. Each defensive missile covers exactly one square, and destroys the ship if it hits one of the $5$ squares that it occupies. Determine the minimum number of missiles needed to destroy the enemy ship with certainty .

1985 All Soviet Union Mathematical Olympiad, 413

Given right hexagon. The lines parallel to all the sides are drawn from all the vertices and midpoints of the sides (consider only the interior, with respect to the hexagon, parts of those lines). Thus the hexagon is divided onto $24$ triangles, and the figure has $19$ nodes. $19$ different numbers are written in those nodes. Prove that at least $7$ of $24$ triangles have the property: the numbers in its vertices increase (from the least to the greatest) counterclockwise.

2009 Chile National Olympiad, 1

Consider $9$ points in the interior of a square of side $1$. Prove that there are three of them that form a triangle with an area less than or equal to $\frac18$ .

2010 Cono Sur Olympiad, 3

Let us define [i]cutting[/i] a convex polygon with $n$ sides by choosing a pair of consecutive sides $AB$ and $BC$ and substituting them by three segments $AM, MN$, and $NC$, where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, the triangle $MBN$ is removed and a convex polygon with $n+1$ sides is obtained. Let $P_6$ be a regular hexagon with area $1$. $P_6$ is [i]cut[/i] and the polygon $P_7$ is obtained. Then $P_7$ is cut in one of seven ways and polygon $P_8$ is obtained, and so on. Prove that, regardless of how the cuts are made, the area of $P_n$ is always greater than $2/3$.

2018 Regional Olympiad of Mexico Center Zone, 3

Consider $n$ lines in the plane in general position, that is, there are not three of the $n$ lines that pass through the same point. Determine if it is possible to label the $k$ points where these lines are inserted with the numbers $1$ through $k$ (using each number exactly once), so that on each line, the labels of the $n-1$ points of that line are arranged in increasing order (in one of the two directions in which they can be traversed).

2013 IMO Shortlist, C2

A configuration of $4027$ points in the plane is called Colombian if it consists of $2013$ red points and $2014$ blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied: i) No line passes through any point of the configuration. ii) No region contains points of both colors. Find the least value of $k$ such that for any Colombian configuration of $4027$ points, there is a good arrangement of $k$ lines. Proposed by [i]Ivan Guo[/i] from [i]Australia.[/i]

2002 Chile National Olympiad, 2

Determine all natural numbers $n$ for which it is possible to construct a rectangle of sides $15$ and $n$, with pieces congruent to: [asy] unitsize(0.6 cm); draw((0,0)--(3,0)); draw((0,1)--(3,1)); draw((0,2)--(1,2)); draw((2,2)--(3,2)); draw((0,0)--(0,2)); draw((1,0)--(1,2)); draw((2,0)--(2,2)); draw((3,0)--(3,2)); draw((5,-0.5)--(6,-0.5)); draw((4,0.5)--(7,0.5)); draw((4,1.5)--(7,1.5)); draw((5,2.5)--(6,2.5)); draw((4,0.5)--(4,1.5)); draw((5,-0.5)--(5,2.5)); draw((6,-0.5)--(6,2.5)); draw((7,0.5)--(7,1.5)); [/asy] The squares of the pieces have side $1$ and the pieces cannot overlap or leave free spaces

1976 Bundeswettbewerb Mathematik, 4

In a plane are given $n > 2$ distinct points. Some pairs of these points are connected by segments so that no two of the segments intersect. Prove that there are at most $3n-6$ segments.

1995 Tuymaada Olympiad, 5

A set consisting of $n$ points of a plane is called an isosceles $n$-point if any three of its points are located in vertices of an isosceles triangle. Find all natural numbers for which there exist isosceles $n$-points.

1989 All Soviet Union Mathematical Olympiad, 508

A polyhedron has an even number of edges. Show that we can place an arrow on each edge so that each vertex has an even number of arrows pointing towards it (on adjacent edges).

1998 All-Russian Olympiad Regional Round, 10.3

Prove that from any finite set of points on the plane, you can remove a point from the bottom in such a way that the remaining set can be split into two parts of smaller diameter. (Diameter is the maximum distance between points of the set.) [hide=original wording]Докажите, что из любого конечного множества точек на плоскости можно так удалитьо дну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр—это максимальное расстояние между точками множества.)[/hide]

2022 Sharygin Geometry Olympiad, 10.3

A line meets a segment $AB$ at point $C$. Which is the maximal number of points $X$ of this line such that one of angles $AXC$ and $BXC$ is equlal to a half of the second one?

1980 All Soviet Union Mathematical Olympiad, 285

The vertical side of a square is divided onto $n$ segments. The sum of the segments with even numbers lengths equals to the sum of the segments with odd numbers lengths. $n-1$ lines parallel to the horizontal sides are drawn from the segments ends, and, thus, $n$ strips are obtained. The diagonal is drawn from the lower left corner to the upper right one. This diagonal divides every strip onto left and right parts. Prove that the sum of the left parts of odd strips areas equals to the sum of the right parts of even strips areas.

2011 Kurschak Competition, 3

Given $2n$ points and $3n$ lines on the plane. Prove that there is a point $P$ on the plane such that the sum of the distances of $P$ to the $3n$ lines is less than the sum of the distances of $P$ to the $2n$ points.

2016 Denmark MO - Mohr Contest, 2

Twenty cubes have been coloured in the following way: There are two red faces opposite each other, two blue faces opposite each other and two green faces opposite each other. The cubes have been glued together as shown in the figure. Two faces that are glued together always have the same colour. The figure shows the colours of some of the faces. Which colours are possible for the face marked with the symbol $\times$? [img]https://cdn.artofproblemsolving.com/attachments/8/2/6127db5bfdce7a749d730fe3626499582f62ba.png[/img]

1968 Polish MO Finals, 1

What is the largest number of regions into which a plane can be divided by drawing $n$ pairs of parallel lines?

1991 Tournament Of Towns, (294) 4

(a) Is it possible to place five wooden cubes in space so that each of them has a part of its face touching each of the others? (b) Answer the same question, but with $6$ cubes.

1981 Swedish Mathematical Competition, 4

A cube side $5$ is divided into $125$ unit cubes. $N$ of the small cubes are black and the rest white. Find the smallest $N$ such that there must be a row of $5$ black cubes parallel to one of the edges of the large cube.

1981 All Soviet Union Mathematical Olympiad, 307

The rectangular table has four rows. The first one contains arbitrary natural numbers (some of them may be equal). The consecutive lines are filled according to the rule: we look through the previous row from left to the certain number $n$ and write the number $k$ if $n$ was met $k$ times. Prove that the second row coincides with the fourth one.

2018 MMATHS, 3

Suppose $n$ points are uniformly chosen at random on the circumference of the unit circle and that they are then connected with line segments to form an $n$-gon. What is the probability that the origin is contained in the interior of this $n$-gon? Give your answer in terms of $n$, and consider only $n \ge 3$.

2008 Princeton University Math Competition, A10

A cuboctahedron is the convex hull of (smallest convex set containing) the $12$ points $(\pm 1, \pm 1, 0), (\pm 1, 0, \pm 1), (0, \pm 1, \pm 1)$. Find the cosine of the solid angle of one of the triangular faces, as viewed from the origin. (Take a figure and consider the set of points on the unit sphere centered on the origin such that the ray from the origin through the point intersects the fi gure. The area of that set is the solid angle of the fi gure as viewed from the origin.)