Found problems: 1704
2013 Saudi Arabia BMO TST, 7
Ayman wants to color the cells of a $50 \times 50$ chessboard into black and white so that each $2 \times 3$ or $3 \times 2$ rectangle contains an even number of white cells. Determine the number of ways Ayman can color the chessboard.
1947 Moscow Mathematical Olympiad, 126
Given a convex pentagon $ABCDE$, prove that if an arbitrary point $M$ inside the pentagon is connected by lines with all the pentagon’s vertices, then either one or three or five of these lines cross the sides of the pentagon opposite the vertices they pass.
Note: In reality, we need to exclude the points of the diagonals, because that in this case the drawn lines can pass not through the internal points of the sides, but through the vertices. But if the drawn diagonals are not considered or counted twice (because they are drawn from two vertices), then the statement remains true.
1941 Moscow Mathematical Olympiad, 082
* Given $\vartriangle ABC$, divide it into the minimal number of parts so that after being flipped over these parts can constitute the same $\vartriangle ABC$.
2010 IMAC Arhimede, 1
$3n$ points are given ($n\ge 1$) in the plane, each $3$ of them are not collinear. Prove that there are $n$ distinct triangles with the vertices those points.
2019 May Olympiad, 5
We consider the $n$ vertices of a regular polygon with $n$ sides. There is a set of triangles with vertices at these $n$ points with the property that for each triangle in the set, the sides of at least one are not the side of any other triangle in the set. What is the largest amount of triangles that can have the set?
[hide=original wording]Consideramos los n vértices de un polÃgono regular de n lados. Se tiene un conjunto de triángulos con vértices en estos n puntos con la propiedad que para cada triángulo del conjunto, al menos uno
de sus lados no es lado de ningún otro triángulo del conjunto. ¿Cuál es la mayor cantidad de triángulos que puede tener el conjunto?[/hide]
2006 Junior Tuymaada Olympiad, 3
Given a convex $ n $-gon ($ n \geq 5 $). Prove that the number of triangles of area $1$ with vertices at the vertices of the $ n $-gon does not exceed $ \frac{1}{3} n (2n-5) $.
1970 All Soviet Union Mathematical Olympiad, 143
The vertices of the regular $n$-gon are marked with some colours (each vertex -- with one colour) in such a way, that the vertices of one colour represent the right polygon. Prove that there are two equal ones among the smaller polygons.
1995 Argentina National Olympiad, 1
$A_0A_1\ldots A_n$ is a regular polygon with $n+1$ vertices ($n>2$). Initially $n$ stones are placed at vertex $A_0$. In each allowed operation, $2$ stones are moved simultaneously, at the player's choice: each stone is moved from the vertex where it is located to one of the adjacent $2$ vertices. Find all the values of $n$ for which it is possible to have, after a succession of permitted operations, a stone at each of the vertices $A_1,A_2,\ldots ,A_n$.
Clarification: The two stones that move in an allowed operation can be at the same vertex or at different vertices.
2011 QEDMO 10th, 8
Find for which natural numbers $n$ one can color the sides and diagonals of a regular $n$-gon with $n$ colors in such a way that for each triplet in pairs of different colors, a triangle can be found, the sides of which are sides or diagonals of $n$-gon and which is colored with exactly these three colors.
1957 Moscow Mathematical Olympiad, 360
(a) A radio lamp has a $7$-contact plug, with the contacts arranged in a circle. The plug is inserted into a socket with $7$ holes. Is it possible to number the contacts and the holes so that for any insertion at least one contact would match the hole with the same number?
(b) A radio lamp has a $20$-contact plug, with the contacts arranged in a circle. The plug is inserted into a socket with $20$ holes. Let the contacts in the plug and the socket be already numbered. Is it always possible to insert the plug so that none of the contacts matches its socket?
1971 IMO, 2
Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.
2013 Swedish Mathematical Competition, 4
A robotic lawnmower is located in the middle of a large lawn. Due a manufacturing defect, the robot can only move straight ahead and turn in directions that are multiples of $60^o$. A fence must be set up so that it delimits the entire part of the lawn that the robot can get to, by traveling along a curve with length no more than $10$ meters from its starting position, given that it is facing north when it starts. How long must the fence be?
2011 IMO Shortlist, 3
Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely.
Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times.
[i]Proposed by Geoffrey Smith, United Kingdom[/i]
2016 Tournament Of Towns, 5
Is it possible to cut a square of side $1$ into two parts and rearrange them so that one can cover a circle having diameter greater than $1$?
(Note: any circle with diameter greater than $1$ suffices)
[i](A. Shapovalov)[/i]
(Translated from [url=http://sasja.shap.homedns.org/Turniry/TG/index.html]here.[/url])
1989 Czech And Slovak Olympiad IIIA, 2
There are $mn$ line segments in a plane that connect $n$ given points. Prove that a sequence $V_0$, $V_1$, $...$, $V_m$ of different points can be selected from them such that $V_{i-1}$ and $V_i$ are connected by a line ($1 \le i \le m$).
IV Soros Olympiad 1997 - 98 (Russia), 10.6
A fire that starts in the steppe spreads in all directions at a speed of $1$ km per hour. A grader with a plow arrived on the fire line at the moment when the fire engulfed a circle with a radius of $1$ km. The grader moves at a speed of $14$ km per hour and cuts a strip with a plow that cuts off the fire. Indicate the path along which the grader should move so that the total area of the burnt steppe does not exceed:
a) $4 \pi $ km$^2$;
b) $3 \pi $ km$^2$.
(We can assume that the grader’s path consists of straight segments and circular arcs.)
2013 Portugal MO, 6
In each side of a regular polygon with $n$ sides, we choose a point different from the vertices and we obtain a new polygon of $n$ sides. For which values of $n$ can we obtain a polygon such that the internal angles are all equal but the polygon isn't regular?
2017 EGMO, 3
There are $2017$ lines in the plane such that no three of them go through the same point. Turbo the snail sits on a point on exactly one of the lines and starts sliding along the lines in the following fashion: she moves on a given line until she reaches an intersection of two lines. At the intersection, she follows her journey on the other line turning left or right, alternating her choice at each intersection point she reaches. She can only change direction at an intersection point. Can there exist a line segment through which she passes in both directions during her journey?
2021 Poland - Second Round, 5
Find the largest positive integer $n$ with the following property: there are rectangles $A_1, ... , A_n$ and $B_1,... , B_n,$ on the plane , each with sides parallel to the axis of the coordinate system, such that the rectangles $A_i$ and $B_i$ are disjoint for all $i \in \{1,..., n\}$, but the rectangles $A_i$ and $B_j$ have a common point for all $i, j \in \{1,..., n\}$, $i \ne j$.
[i]Note: By points belonging to a rectangle we mean all points lying either in its interior, or on any of its sides, including its vertices [/i]
2014 Tournament of Towns., 7
Points $A_1, A_2, ..., A_{10}$ are marked on a circle clockwise. It is known that these points can be divided into pairs of points symmetric with respect to the centre of the circle. Initially at each marked point there was a grasshopper. Every minute one of the grasshoppers jumps over its neighbour along the circle so that the resulting distance between them doesn't change. It is not allowed to jump over any other grasshopper and to land at a point already occupied. It occurred that at some moment nine grasshoppers were found at points $A_1, A_2, ... , A_9$ and the tenth grasshopper was on arc $A_9A_{10}A_1$. Is it necessarily true that this grasshopper was exactly at point $A_{10}$?
Oliforum Contest V 2017, 2
Find all quadrilaterals which can be covered (without overlappings) with squares with side $ 1$ and equilateral triangles with side $ 1$.
(Emanuele Tron)
2015 Chile National Olympiad, 3
Consider a horizontal line $L$ with $n\ge 4$ different points $P_1, P_2, ..., P_n$. For each pair of points $P_i$ ,$P_j $a circle is drawn such that the segment $P_iP_j$ is a diameter. Determine the maximum number of intersections between circles that can occur, considering only those that occur strictly above $L$.
[hide=original wording]Considere una recta horizontal $L$ con $n\ge 4$ puntos $P_1, P_2, ..., P_n$ distintos en ella. Para cada par de puntos $P_i,P_j$ se traza un circulo de manera tal que el segmento $P_iP_j$ es un diametro. Determine la cantidad maxima de intersecciones entre circulos que pueden ocurrir, considerando solo aquellas que ocurren estrictamente arriba de $L$.[/hide]
2020 Princeton University Math Competition, 14
Let $N$ be the number of convex $27$-gons up to rotation there are such that each side has length $ 1$ and each angle is a multiple of $2\pi/81$. Find the remainder when $N$ is divided by $23$.
1998 Bundeswettbewerb Mathematik, 4
Let $3(2^n -1)$ points be selected in the interior of a polyhedron $P$ with volume $2^n$, where n is a positive integer. Prove that there exists a convex polyhedron $U$ with volume $1$, contained entirely inside $P$, which contains none of the selected points.
2022 USA TSTST, 1
Let $n$ be a positive integer. Find the smallest positive integer $k$ such that for any set $S$ of $n$ points in the interior of the unit square, there exists a set of $k$ rectangles such that the following hold:
[list=disc]
[*]The sides of each rectangle are parallel to the sides of the unit square.
[*]Each point in $S$ is [i]not[/i] in the interior of any rectangle.
[*]Each point in the interior of the unit square but [i]not[/i] in $S$ is in the interior of at least one of the $k$ rectangles
[/list]
(The interior of a polygon does not contain its boundary.)
[i]Holden Mui[/i]