Found problems: 14842
2018 Federal Competition For Advanced Students, P2, 5
On a circle $2018$ points are marked. Each of these points is labeled with an integer.
Let each number be larger than the sum of the preceding two numbers in clockwise order.
Determine the maximal number of positive integers that can occur in such a configuration of $2018$ integers.
[i](Proposed by Walther Janous)[/i]
1968 Kurschak Competition, 3
For each arrangement $X$ of $n$ white and $n$ black balls in a row, let $f(X)$ be the number of times the color changes as one moves from one end of the row to the other. For each $k$ such that $0 < k < n$, show that the number of arrangements $X$ with $f(X) = n -k$ is the same as the number with $f(X) = n + k$.
2011 Junior Balkan Team Selection Tests - Romania, 2
We consider an $n \times n$ ($n \in N, n \ge 2$) square divided into $n^2$ unit squares. Determine all the values of $k \in N$ for which we can write a real number in each of the unit squares such that the sum of the $n^2$ numbers is a positive number, while the sum of the numbers from the unit squares of any $k \times k$ square is a negative number.
2004 Denmark MO - Mohr Contest, 5
Determine for which natural numbers $n$ you can cover a $2n \times 2n$ chessboard with non-overlapping $L$ pieces. An $L$ piece covers four spaces and has appearance like the letter $L$. The piece may be rotated and mirrored at will.
2024 Dutch BxMO/EGMO TST, IMO TSTST, 4
Let $n$ be a positive with $n\geq 3$. Consider a board of $n \times n$ boxes. In each step taken the colors of the $5$ boxes that make up the figure bellow change color (black boxes change to white and white boxes change to black)
The figure can be rotated $90°, 180°$ or $270°$.
Firstly, all the boxes are white.Determine for what values of $n$ it can be achieved, through a series of steps, that all the squares on the board are black.
2019 Final Mathematical Cup, 4
Let $n \ge 2$ be a positive integer. A grasshopper is moving along the sides of an $n \times n$ square net, which is divided on $n^2$ unit squares. It moves so that
а) in every $1 \times 1$ unit square of the net, it passes only through one side
b) when it passes one side of $1 \times1$ unit square of the net, it jumps on a vertex on another arbitrary $1 \times 1$ unit square of the net, which does not have a side on which the grasshopper moved along.
The grasshopper moves until the conditions can be fulfilled.
What is the shortest and the longest path that the grasshopper can go through if it moves according to the condition of the problem? Calculate its length and draw it on the net.
2022 Baltic Way, 9
Five elders are sitting around a large bonfire. They know that Oluf will put a hat of one of four colours (red, green, blue or yellow) on each elder’s head, and after a short time for silent reflection each elder will have to write down one of the four colours on a piece of paper. Each elder will only be able to see the colour of their two neighbours’ hats, not that of their own nor that of the remaining two elders’ hats, and they also cannot communicate after Oluf starts putting the hats on.
Show that the elders can devise a strategy ahead of time so that at most two elders will end up writing down the colour of their own hat
2022 Estonia Team Selection Test, 6
The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a [i]path from $X$ to $Y$[/i] is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called [i]diverse[/i] if no road belongs to two or more paths in the collection.
Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$.
[i]Proposed by Warut Suksompong, Thailand[/i]
2016 Romanian Masters in Mathematic, 2
Given positive integers $m$ and $n \ge m$, determine the largest number of dominoes ($1\times2$ or $2 \times 1$ rectangles) that can be placed on a rectangular board with $m$ rows and $2n$ columns consisting of cells ($1 \times 1$
squares) so that:
(i) each domino covers exactly two adjacent cells of the board;
(ii) no two dominoes overlap;
(iii) no two form a $2 \times 2$ square; and
(iv) the bottom row of the board is completely covered by $n$ dominoes.
MOAA Team Rounds, 2022.4
Angeline flips three fair coins, and if there are any tails, she then flips all coins that landed tails each one more time. The probability that all coins are now heads can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2020 Estonia Team Selection Test, 2
Let $n$ be an integer, $n \ge 3$. Select $n$ points on the plane, none of which are three on the same line. Consider all triangles with vertices at selected points, denote the smallest of all the interior angles of these triangles by the variable $\alpha$. Find the largest possible value of $\alpha$ and identify all the selected $n$ point placements for which the max occurs.
1968 Leningrad Math Olympiad, 8.6*
All $10$-digit numbers consisting of digits $1, 2$ and $3$ are written one under the other. Each number has one more digit added to the right. $1$, $2$ or $3$, and it turned out that to the number $111. . . 11$ added $1$ to the number $ 222. . . 22$ was assigned $2$, and the number $333. . . 33$ was assigned $3$. It is known that any two numbers that differ in all ten digits have different digits assigned to them. Prove that the assigned column of numbers matches with one of the ten columns written earlier.
2022 Miklós Schweitzer, 1
We say that a set $A \subset \mathbb Z$ is irregular if, for any different elements $x, y \in A$, there is no element of the form $x + k(y -x)$ different from $x$ and $y$ (where $k$ is an integer). Is there an infinite irregular set?
2009 All-Russian Olympiad Regional Round, 11.8
11 integers are placed along the circle. It is known that any two neighbors differ by at least 20 and sum of any two neighbors is no more than 100. Find the minimal possible sum of all numbers.
2018 Dutch IMO TST, 1
Suppose a grid with $2m$ rows and $2n$ columns is given, where $m$ and $n$ are positive integers. You may place one pawn on any square of this grid, except the bottom left one or the top right one. After placing the pawn, a snail wants to undertake a journey on the grid. Starting from the bottom left square, it wants to visit every square exactly once, except the one with the pawn on it, which the snail wants to avoid. Moreover, it wants to finish in the top right square. It can only move horizontally or vertically on the grid.
On which squares can you put the pawn for the snail to be able to finish its journey?
1983 IMO Longlists, 44
We are given twelve coins, one of which is a fake with a different mass from the other eleven. Determine that coin with three weighings and whether it is heavier or lighter than the others.
2006 Iran Team Selection Test, 2
Suppose $n$ coins are available that their mass is unknown. We have a pair of balances and every time we can choose an even number of coins and put half of them on one side of the balance and put another half on the other side, therefore a [i]comparison[/i] will be done. Our aim is determining that the mass of all coins is equal or not. Show that at least $n-1$ [i]comparisons[/i] are required.
2019 PUMaC Combinatorics A, 1
Prinstan Trollner and Dukejukem are competing at the game show WASS. Both players spin a wheel which chooses an integer from $1$ to $50$ uniformly at random, and this number becomes their score. Dukejukem then flips a weighted coin that lands heads with probability $\tfrac{3}{5}$. If he flips heads, he adds $1$ to his score. A player wins the game if their score is higher than the other player's score. A player wins the game if their score is higher than the other player's score. The probability Dukejukem defeats the Trollner to win WASS equals $\tfrac{m}{n}$ where $m$ and $n$ are coprime positive integers. Computer $m+n$.
2016 Estonia Team Selection Test, 6
A circle is divided into arcs of equal size by $n$ points ($n \ge 1$). For any positive integer $x$, let $P_n(x)$ denote the number of possibilities for colouring all those points, using colours from $x$ given colours, so that any rotation of the colouring by $ i \cdot \frac{360^o}{n}$ , where i is a positive integer less than $n$, gives a colouring that differs from the original in at least one point. Prove that the function $P_n(x)$ is a polynomial with respect to $x$.
2005 Taiwan TST Round 2, 2
Starting from a positive integer $n$, we can replace the current number with a multiple of the current number or by deleting one or more zeroes from the decimal representation of the current number. Prove that for all values of $n$, it is possible to obtain a single-digit number by applying the above algorithm a finite number of times.
There is a nice solution to this...
2019 PUMaC Combinatorics A, 4
Kelvin and Quinn are collecting trading cards; there are $6$ distinct cards that could appear in a pack. Each pack contains exactly one card, and each card is equally likely. Kelvin buys packs until he has at least one copy of every card, and then he stops buying packs. If Quinn is missing exactly one card, the probability that Kelvin has at least two copies of the card Quinn is missing is expressible as $\tfrac{m}{n}$ for coprime positive integers $m$ and $n$. Determine $m+n$.
MathLinks Contest 1st, 1
Given are $4004$ distinct points, which lie in the interior of a convex polygon of area $1$.
Prove that there exists a convex polygon of area $\frac{1}{2003}$, included in the given polygon, such that it does not contain any of the given points in its interior.
2022 Benelux, 2
Let $n$ be a positive integer. There are $n$ ants walking along a line at constant nonzero speeds. Different ants need not walk at the same speed or walk in the same direction. Whenever two or more ants collide, all the ants involved in this collision instantly change directions. (Different ants need not be moving in opposite directions when they collide, since a faster ant may catch up with a slower one that is moving in the same direction.) The ants keep walking indefinitely.
Assuming that the total number of collisions is finite, determine the largest possible number of collisions in terms of $n$.
2016 IFYM, Sozopol, 6
We are given a chessboard 100 x 100, $k$ barriers (each with length 1), and one ball. We want to put the barriers between the cells of the board and put the ball in some cell, in such way that the ball can get to each possible cell on the board. The only way that the ball can move is by lifting the board so it can go only forward, backward, to the left or to the right. The ball passes all cells on its way until it reaches a barrier or the edge of the board where it stops. What’s the least number of barriers we need so we can achieve that?
ABMC Accuracy Rounds, 2019
[b]p1.[/b] Compute $45\times 45 - 6$.
[b]p2.[/b] Consecutive integers have nice properties. For example, $3$, $4$, $5$ are three consecutive integers, and $8$, $9$, $10$ are three consecutive integers also. If the sum of three consecutive integers is $24$, what is the smallest of the three numbers?
[b]p3.[/b] How many positive integers less than $25$ are either multiples of $2$ or multiples of $3$?
[b]p4.[/b] Charlotte has $5$ positive integers. Charlotte tells you that the mean, median, and unique mode of his five numbers are all equal to $10$. What is the largest possible value of the one of Charlotte's numbers?
[b]p5.[/b] Mr. Meeseeks starts with a single coin. Every day, Mr. Meeseeks goes to a magical coin converter where he can either exchange $1$ coin for $5$ coins or exchange $5$ coins for $3$ coins. What is the least number of days Mr. Meeseeks needs to end with $15$ coins?
[b]p6.[/b] Twelve years ago, Violet's age was twice her sister Holo's age. In $7$ years, Holo's age will be $13$ more than a third of Violet's age. $3$ years ago, Violet and Holo's cousin Rindo's age was the sum of their ages. How old is Rindo?
[b]p7.[/b] In a $2 \times 3$ rectangle composed of $6$ unit squares, let $S$ be the set of all points $P$ in the rectangle such that a unit circle centered at $P$ covers some point in exactly $3$ of the unit squares. Find the area of the region $S$. For example, the diagram below shows a valid unit circle in a $2 \times 3$ rectangle.
[img]https://cdn.artofproblemsolving.com/attachments/d/9/b6e00306886249898c2bdb13f5206ced37d345.png[/img]
[b]p8.[/b] What are the last four digits of $2^{1000}$?
[b]p9.[/b] There is a point $X$ in the center of a $2 \times 2 \times 2$ box. Find the volume of the region of points that are closer to $X$ than to any of the vertices of the box.
[b]p10.[/b] Evaluate $\sqrt{37 \cdot 41 \cdot 113 \cdot 290 - 4319^2}$
[b]p11.[/b] (Estimation) A number is abundant if the sum of all its divisors is greater than twice the number. One such number is $12$, because $1+2+3+4+6+12 = 28 > 24$: How many abundant positive integers less than $20190$ are there?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].