Found problems: 14842
2023 May Olympiad, 3
The $49$ numbers $2,3,4,...,49,50$ are written on the blackboard . An allowed operation consists of choosing two different numbers $a$ and $b$ of the blackboard such that $a$ is a multiple of $b$ and delete exactly one of the two. María performs a sequence of permitted operations until she observes that it is no longer possible to perform any more. Determine the minimum number of numbers that can remain on the board at that moment.
1975 Bundeswettbewerb Mathematik, 4
Two brothers inherited $n$ gold pieces of the total weight $2n$. The weights of the pieces are integers, and the heaviest piece is not heavier than all the other pieces together. Show that if $n$ is even, the brother can divide the inheritance into two parts of equal weight.
2016 China Team Selection Test, 2
In the coordinate plane the points with both coordinates being rational numbers are called rational points. For any positive integer $n$, is there a way to use $n$ colours to colour all rational points, every point is coloured one colour, such that any line segment with both endpoints being rational points contains the rational points of every colour?
2017 HMNT, 1
[b]T[/b]wo ordered pairs $(a,b)$ and $(c,d)$, where $a,b,c,d$ are real numbers, form a basis of the coordinate plane if $ad \neq bc$. Determine the number of ordered quadruples $(a,b,c)$ of integers between $1$ and $3$ inclusive for which $(a,b)$ and $(c,d)$ form a basis for the coordinate plane.
2025 Alborz Mathematical Olympiad, P3
Is it possible to partition three-dimensional space into tetrahedra (not necessarily regular) such that there exists a plane that intersects the edges of each tetrahedron at exactly 4 or 0 points?
Proposed by Arvin Taheri
2012 Iran MO (3rd Round), 3
Prove that if $n$ is large enough, among any $n$ points of plane we can find $1000$ points such that these $1000$ points have pairwise distinct distances. Can you prove the assertion for $n^{\alpha}$ where $\alpha$ is a positive real number instead of $1000$?
2022/2023 Tournament of Towns, P5
A $2N\times2N$ board is covered by non-overlapping dominos of $1\times2$ size. A lame rook (which can only move one cell at a time, horizontally or vertically) has visited each cell once on its route across the board. Call a move by the rook longitudinal if it is a move from one cell of a domino to another cell of the same domino. What is:
[list=a]
[*]the maximum possible number of longitudinal moves?
[*]the minimum possible number of longitudinal moves?
[/list]
2021 Macedonian Balkan MO TST, Problem 4
Viktor and Natalia play a colouring game with a 3-dimensional cube taking turns alternatingly. Viktor goes first, and on each of his turns, he selects an unpainted edge, and paints it violet. On each of Natalia's turns, she selects an unpainted edge, or at most once during the game a face diagonal, and paints it neon green. If the player on turn cannot make a legal move, then the turn switches to the other player. The game ends when nobody can make any more legal moves.
Natalia wins if at the end of the game every vertex of the cube can be reached from every other vertex by traveling only along neon green segments (edges or diagonal), otherwise Viktor wins.
Who has a winning strategy? (Prove your answer.)
[i]Authored by Viktor Simjanoski[/i]
2012 Indonesia TST, 2
A TV station holds a math talent competition, where each participant will be scored by 8 people. The scores are F (failed), G (good), or E (exceptional). The competition is participated by three people, A, B, and C. In the competition, A and B get the same score from exactly 4 people. C states that he has differing scores with A from at least 4 people, and also differing scores with B from at least 4 people. Assuming C tells the truth, how many scoring schemes can occur?
2025 Bangladesh Mathematical Olympiad, P3
Two player are playing in an $100 \times 100$ grid. Initially the whole board is black. On $A$'s move, he selects $4 \times 4$ subgrid and color it white. On $B$'s move, he selects a $3 \times 3$ subgrid and colors it black. $A$ wants to make the whole board white. Can he do it?
[i]Proposed by S M A Nahian[/i]
2009 Mexico National Olympiad, 1
Let $n>1$ be an odd integer, and let $a_1$, $a_2$, $\dots$, $a_n$ be distinct real numbers. Let $M$ be the maximum of these numbers and $m$ the minimum. Show that it is possible to choose the signs of the expression $s=\pm a_1\pm a_2\pm\dots\pm a_n$ so that
\[m<s<M\]
2006 Irish Math Olympiad, 1
The rooms of a building are arranged in a $m\times n$ rectangular grid (as shown below for the $5\times 6$ case). Every room is connected by an open door to each adjacent room, but the only access to or from the building is by a door in the top right room. This door is locked with an elaborate system of $mn$ keys, one of which is located in every room of the building. A person is in the bottom left room and can move from there to any adjacent room. However, as soon as the person leaves a room, all the doors of that room are instantly and automatically locked. Find, with proof, all $m$ and $n$ for which it is possible for the person to collect all the keys and escape the building.
[asy]
unitsize(5mm);
defaultpen(linewidth(.8pt));
fontsize(25pt);
for(int i=0; i<=5; ++i)
{
for(int j=0; j<= 6; ++j)
{
draw((0,i)--(9,i));
draw((1.5*j,0)--(1.5*j,5));
}}
dot((.75, .5));
label("$\ast$",(8.25,4.5));
dot((11, 3));
label("$\ast$",(11,1.75));
label("room with locked external door",(18,1.9));
label("starting position",(15.3,3));
[/asy]
I Soros Olympiad 1994-95 (Rus + Ukr), 11.4
Given a chessboard that is infinite in all directions. Is it possible to place an infinite number of queens on it so that on each horizontally, on each vertical and on each diagonal of both directions (i.e. on a set of cells located at an angle of $45^o$ or $135^o$ to the horizontal) was exactly one queen?
2024-IMOC, C6
On an $m\times n$ grid there's a snail in each cell. Each round, the snail army can choose four snail in a $2\times 2$ square and make them perform the complete [b]Quadrilateral Dance[/b], which is rotating the four snails clockwise by $90$ degrees, moving each one to an adjacent cell. Find all pairs of positive integers $(m,n)$ such that the snails can achieve any permutation by performing a finite number of times of [b]Quadrilateral Dance[/b].
[i]Proposed by chengbilly[/i]
2011 Chile National Olympiad, 4
It is intended to make a map locating $30$ different cities on it. For this, all the distances between these cities are available as data (each of these distances is considered as a “data”). Three of these cities are already laid out on the map, and they turn out to be non-collinear. How much data must be used as a minimum to complete the map?
2002 Cono Sur Olympiad, 5
Consider the set $A = \{1, 2, ..., n\}$. For each integer $k$, let $r_k$ be the largest quantity of different elements of $A$ that we can choose so that the difference between two numbers chosen is always different from $k$. Determine the highest value possible of $r_k$, where $1 \le k \le \frac{n}{2}$
2008 Princeton University Math Competition, A2/B3
A [i]hypergraph[/i] consists of a set of vertices $V$ and a set of subsets of those vertices, each of which is called an edge. (Intuitively, it's a graph in which each edge can contain multiple vertices). Suppose that in some hypergraph, no two edges have exactly one vertex in common. Prove that one can color this hypergraph's vertices such that every edge contains both colors of vertices.
2019 Saudi Arabia JBMO TST, 2
We call a tiling of an $m\times$ n rectangle with arabos (see figure below) [i]regular[/i] if there is no sub-rectangle which is tiled with arabos. Prove that if for some $m$ and $n$ there exists a [i]regular[/i] tiling of the $m\times n$ rectangle then there exists a [i]regular[/i] tiling also for the $2m \times 2n$ rectangle.
[img]https://cdn.artofproblemsolving.com/attachments/1/1/2ab41cc5107a21760392253ed52d9e4ecb22d1.png[/img]
2015 Bosnia Herzegovina Team Selection Test, 5
Let $N$ be a positive integer. It is given set of weights which satisfies following conditions:
$i)$ Every weight from set has some weight from $1,2,...,N$;
$ii)$ For every $i\in {1,2,...,N}$ in given set there exists weight $i$;
$iii)$ Sum of all weights from given set is even positive integer.
Prove that set can be partitioned into two disjoint sets which have equal weight
2021 LMT Fall, 11
The LHS Math Team is going to have a Secret Santa event! Nine members are going to participate, and each person must give exactly one gift to a specific recipient so that each person receives exactly one gift. But to make it less boring, no pairs of people can just swap gifts. The number of ways to assign who gives gifts to who in the Secret Santa Exchange with these constraints is $N$. Find the remainder when $N$ is divided by $1000$.
2022 Girls in Math at Yale, Tiebreaker
[b]p1.[/b] Suppose that $x$ and $y$ are positive real numbers such that $\log_2 x = \log_x y = \log_y 256$. Find $xy$.
[b]p2.[/b] Let the roots of $x^2 + 7x + 11$ be $r$ and $s$. If f(x) is the monic polynomial with roots $rs + r + s$ and $r^2 + s^2$, what is $f(3)$?
[b]p3.[/b] Call a positive three digit integer $\overline{ABC}$ fancy if $\overline{ABC} = (\overline{AB})^2 - 11 \cdot \overline{C}$. Find the sum of all fancy integers.
[b]p4.[/b] In triangle $ABC$, points $D$ and $E$ are on line segments $BC$ and $AC$, respectively, such that $AD$ and $BE$ intersect at $H$. Suppose that $AC = 12$, $BC = 30$, and $EC = 6$. Triangle $BEC$ has area $45$ and triangle $ADC$ has area $72$, and lines $CH$ and $AB$ meet at $F$. If $BF^2$ can be expressed as $\frac{a-b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ with $c$ squarefree and $gcd(a, b, d) = 1$, then find $a + b + c + d$.
[b]p5.[/b] Find the minimum possible integer $y$ such that $y > 100$ and there exists a positive integer $x$ such that $x^2 + 18x + y$ is a perfect fourth power.
[b]p6.[/b] Let $ABCD$ be a quadrilateral such that $AB = 2$, $CD = 4$, $BC = AD$, and $\angle ADC + \angle BCD = 120^o$. If the sum of the maximum and minimum possible areas of quadrilateral $ABCD$ can be expressed as $a\sqrt{b}$ for positive integers $a, b$ with $b$ squarefree, then find $a + b$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Al-Khwarizmi IJMO, 4
We call a permutation of the set of real numbers $\{a_1,\cdots,a_n\}$, $n\in\mathbb{N}$ [i]average increasing[/i] if the arithmetic mean of its first $k$ elements for $k=1,\cdots ,n$ form a strictly increasing sequence.
1) Depending on $n$, determine the smallest number that can be the last term of some average increasing permutation of the numbers $\{1,\cdots,n\}$;
2) Depending on $n$, determine the lowest position (in some general order) that the number $n$ can be achieved in some average increasing permutation of the numbers $\{1,\cdots,n\}.$
[i] Proposed by David Hruska, Czech Republic[/i]
2011 LMT, Team Round
[b]p1.[/b] Triangle $ABC$ has side lengths $AB = 3^2$ and $BC = 4^2$. Given that $\angle ABC$ is a right angle, determine the length of $AC$.
[b]p2.[/b] Suppose $m$ and $n$ are integers such that $m^2+n^2 = 65$. Find the largest possible value of $m-n$.
[b]p3.[/b] Six middle school students are sitting in a circle, facing inwards, and doing math problems. There is a stack of nine math problems. A random student picks up the stack and, beginning with himself and proceeding clockwise around the circle, gives one problem to each student in order until the pile is exhausted. Aditya falls asleep and is therefore not the student who picks up the pile, although he still receives problem(s) in turn. If every other student is equally likely to have picked up the stack of problems and Vishwesh is sitting directly to Aditya’s left, what is the probability that Vishwesh receives exactly two problems?
[b]p4.[/b] Paul bakes a pizza in $15$ minutes if he places it $2$ feet from the fire. The time the pizza takes to bake is directly proportional to the distance it is from the fire and the rate at which the pizza bakes is constant whenever the distance isn’t changed. Paul puts a pizza $2$ feet from the fire at $10:30$. Later, he makes another pizza, puts it $2$ feet away from the fire, and moves the first pizza to a distance of $3$ feet away from the fire instantly. If both pizzas finish baking at the same time, at what time are they both done?
[b]p5.[/b] You have $n$ coins that are each worth a distinct, positive integer amount of cents. To hitch a ride with Charon, you must pay some unspecified integer amount between $10$ and $20$ cents inclusive, and Charon wants exact change paid with exactly two coins. What is the least possible value of $n$ such that you can be certain of appeasing Charon?
[b]p6.[/b] Let $a, b$, and $c$ be positive integers such that $gcd(a, b)$, $gcd(b, c)$ and $gcd(c, a)$ are all greater than $1$, but $gcd(a, b, c) = 1$. Find the minimum possible value of $a + b + c$.
[b]p7.[/b] Let $ABC$ be a triangle inscribed in a circle with $AB = 7$, $AC = 9$, and $BC = 8$. Suppose $D$ is the midpoint of minor arc $BC$ and that $X$ is the intersection of $\overline{AD}$ and $\overline{BC}$. Find the length of $\overline{BX}$.
[b]p8.[/b] What are the last two digits of the simplified value of $1! + 3! + 5! + · · · + 2009! + 2011!$ ?
[b]p9.[/b] How many terms are in the simplified expansion of $(L + M + T)^{10}$ ?
[b]p10.[/b] Ben draws a circle of radius five at the origin, and draws a circle with radius $5$ centered at $(15, 0)$. What are all possible slopes for a line tangent to both of the circles?
PS. You had better use hide for answers.
2024 Saint Petersburg Mathematical Olympiad, 5
$2 \ 000 \ 000$ points with integer coordinates are marked on the numeric axis. Segments of lengths $97$, $100$ and $103$ with ends at these points are considered. What is the largest number of such segments?
2017 OMMock - Mexico National Olympiad Mock Exam, 2
Alice and Bob play on an infinite board formed by equilateral triangles. In each turn, Alice first places a white token on an unoccupied cell, and then Bob places a black token on an unoccupied cell. Alice's goal is to eventually have $k$ white tokens on a line. Determine the maximum value of $k$ for which Alice can achieve this no matter how Bob plays.
[i]Proposed by Oriol Solé[/i]