This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2018 Saudi Arabia BMO TST, 3

The partition of $2n$ positive integers into $n$ pairs is called [i]square-free[/i] if the product of numbers in each pair is not a perfect square.Prove that if for $2n$ distinct positive integers, there exists one square-free partition, then there exists at least $n!$ square-free partitions.

2023 4th Memorial "Aleksandar Blazhevski-Cane", P1

Let $n$ be a fixed positive integer and fix a point $O$ in the plane. There are $n$ lines drawn passing through the point $O$. Determine the largest $k$ (depending on $n$) such that we can always color $k$ of the $n$ lines red in such a way that no two red lines are perpendicular to each other. [i]Proposed by Nikola Velov[/i]

2024 Malaysian IMO Training Camp, 3

Given $n$ students in the plane such that the $\frac{n(n-1)}{2}$ distances are pairwise distinct. Each student gives a candy each to the $k$ students closest to him. Given that each student receives the same amount of candies, determine all possible values of $n$ in terms of $k$. [i]Proposed by Wong Jer Ren[/i]

2011 Indonesia TST, 2

Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$

2021 Simon Marais Mathematical Competition, B2

Let $n$ be a positive integer. There are $n$ lamps, each with a switch that changes the lamp from on to off, or from off to on, each time it is pressed. The lamps are initially all off. You are going to press the switches in a series of rounds. In the first round, you are going to press exactly $1$ switch; in the second round, you are going to press exactly $2$ switches; and so on, so that in the $k$th round you are going to press exactly $k$ switches. In each round you will press each switch at most once. Your goal is to finish a round with all of the lamps switched on. Determine for which $n$ you can achieve this goal.

2003 Estonia National Olympiad, 5

The game [i]Clobber [/i] is played by two on a strip of $2k$ squares. At the beginning there is a piece on each square, the pieces of both players stand alternatingly. At each move the player shifts one of his pieces to the neighbouring square that holds a piece of his opponent and removes his opponent’s piece from the table. The moves are made in turn, the player whose opponent cannot move anymore is the winner. Prove that if for some $k$ the player who does not start the game has the winning strategy, then for $k + 1$ and $k + 2$ the player who makes the first move has the winning strategy.

2005 Estonia National Olympiad, 5

A $5\times 5$ board is covered by eight hooks (a three unit square figure, shown in the picture) so that one unit square remains free. Determine all squares of the board that can remain free after such covering. [img]https://cdn.artofproblemsolving.com/attachments/6/8/a8c4e47ba137b904bd28c01c1d2cb765824e6a.png[/img]

2014 Baltic Way, 9

What is the least posssible number of cells that can be marked on an $n \times n$ board such that for each $m >\frac{ n}{2}$ both diagonals of any $m \times m$ sub-board contain a marked cell?

Kvant 2021, M2637

A table with three rows and 100 columns is given. Initially, in the left cell of each row there are $400\cdot 3^{100}$ chips. At one move, Petya marks some (but at least one) chips on the table, and then Vasya chooses one of the three rows. After that, all marked chips in the selected row are shifted to the right by a cell, and all marked chips in the other rows are removed from the table. Petya wins if one of the chips goes beyond the right edge of the table; Vasya wins if all the chips are removed. Who has a winning strategy? [i]Proposed by P. Svyatokum, A. Khuzieva and D. Shabanov[/i]

2023 Chile TST IMO, 4

On a \( 10 \times 10 \) chessboard, there are 91 white pawns placed in different squares. Nico picks a white pawn, paints it black, and places it in an empty square, repeating the process until all pawns have been painted. Prove that at some point, there will be two pawns of different colors placed on squares that share a common edge.

2024/2025 TOURNAMENT OF TOWNS, P4

Several jugs (not necessarily of the same size) with juices are placed along a circle. It is allowed to transfuse any part of juice (maybe nothing or the total content) from any jug to the neighboring one on the right, so that the latter one is not overflowed and the sugariness of its content becomes equal to $10\%$. It is known that at the initial moment such transfusion is possible from each jug. Prove that it is possible to perform several transfusions in some order, at most one transfusion from each jug, such that the sugariness of the content of each non-empty jug will become equal to $10\%$. (Sugariness is the percent of sugar in a jug, by weight. Sugar is always uniformly distributed in a jug.)

Kettering MO, 2010

[b]p1.[/b] Find the value of the parameter $a$ for which the following system of equations does not have solutions: $$ax + 2y = 1$$ $$2x + ay = 1$$ [b]p2.[/b] Find all solutions of the equation $\cos(2x) - 3 \sin(x) + 1 = 0$. [b]p3.[/b] A circle of a radius $r$ is inscribed into a triangle. Tangent lines to this circle parallel to the sides of the triangle cut out three smaller triangles. The radiuses of the circles inscribed in these smaller triangles are equal to $1,2$ and $3$. Find $r$. [b]p4.[/b] Does there exist an integer $k$ such that $\log_{10}(1 + 49367 \cdot k)$ is also an integer? [b]p5.[/b] A plane is divided by $3015$ straight lines such that neither two of them are parallel and neither three of them intersect at one point. Prove that among the pieces of the plane obtained as a result of such division there are at least $2010$ triangular pieces. PS. You should use hide for answers.

2009 Bundeswettbewerb Mathematik, 1

At the start of a game there are three boxes with $2008, 2009$ and $2010$ game pieces Anja and Bernd play in turns according to the following rule: [i]When it is your turn, select two boxes, empty them and then distribute the pieces from the third box to the three boxes, such that no box may remain empty.If you can no longer complete a turn, you have lost. [/i] Who has a winning strategy when Anja starts?

1972 Poland - Second Round, 4

A cube with edge length $ n $ is divided into $ n^3 $ unit cubes by planes parallel to its faces. How many pairs of such unit cubes exist that have no more than two vertices in common?

2022 ABMC, Accuracy

[b]p1.[/b] Let $X = 2022 + 022 + 22 + 2$. When $X$ is divided by $22$, there is a remainder of $R$. What is the value of $R$? [b]p2.[/b] When Amy makes paper airplanes, her airplanes fly $75\%$ of the time. If her airplane flies, there is a $\frac56$ chance that it won’t fly straight. Given that she makes $80$ airplanes, what is the expected number airplanes that will fly straight? [b]p3.[/b] It takes Joshua working alone $24$ minutes to build a birdhouse, and his son working alone takes $16$ minutes to build one. The effective rate at which they work together is the sum of their individual working rates. How long in seconds will it take them to make one birdhouse together? [b]p4.[/b] If Katherine’s school is located exactly $5$ miles southwest of her house, and her soccer tournament is located exactly $12$ miles northwest of her house, how long, in hours, will it take Katherine to bike to her tournament right after school given she bikes at $0.5$ miles per hour? Assume she takes the shortest path possible. [b]p5.[/b] What is the largest possible integer value of $n$ such that $\frac{4n+2022}{n+1}$ is an integer? [b]p6.[/b] A caterpillar wants to go from the park situated at $(8, 5)$ back home, located at $(4, 10)$. He wants to avoid routes through $(6, 7)$ and $(7, 10)$. How many possible routes are there if the caterpillar can move in the north and west directions, one unit at a time? [b]p7.[/b] Let $\vartriangle ABC$ be a triangle with $AB = 2\sqrt{13}$, $BC = 6\sqrt2$. Construct square $BCDE$ such that $\vartriangle ABC$ is not contained in square $BCDE$. Given that $ACDB$ is a trapezoid with parallel bases $\overline{AC}$, $\overline{BD}$, find $AC$. [b]p8.[/b] How many integers $a$ with $1 \le a \le 1000$ satisfy $2^a \equiv 1$ (mod $25$) and $3^a \equiv 1$ (mod $29$)? [b]p9.[/b] Let $\vartriangle ABC$ be a right triangle with right angle at $B$ and $AB < BC$. Construct rectangle $ADEC$ such that $\overline{AC}$,$\overline{DE}$ are opposite sides of the rectangle, and $B$ lies on $\overline{DE}$. Let $\overline{DC}$ intersect $\overline{AB}$ at $M$ and let $\overline{AE}$ intersect $\overline{BC}$ at $N$. Given $CN = 6$, $BN = 4$, find the $m+n$ if $MN^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. [b]p10.[/b] An elimination-style rock-paper-scissors tournament occurs with $16$ players. The $16$ players are all ranked from $1$ to $16$ based on their rock-paper-scissor abilities where $1$ is the best and $16$ is the worst. When a higher ranked player and a lower ranked player play a round, the higher ranked player always beats the lower ranked player and moves on to the next round of the tournament. If the initial order of players are arranged randomly, and the expected value of the rank of the $2$nd place player of the tournament can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$ what is the value of $m+n$? [b]p11.[/b] Estimation (Tiebreaker) Estimate the number of twin primes (pairs of primes that differ by $2$) where both primes in the pair are less than $220022$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 Tournament Of Towns, 5

Two people play a game on a $9 \times 9$ board. They move alternately. On each move, the first player draws a cross in an empty cell, and the second player draws a nought in an empty cell. When all $81$ cells are filled, the number $K$ of rows and columns in which there are more crosses and the number $H$ of rows and columns in which there are more noughts are counted. The score for the first player is the difference $B = K- H$. Find a value of $B$ such that the first player can guarantee a score of at least $B$, while the second player can hold the first player's score to at most B, regardless how the opponent plays. (A Kanel)

2020 JBMO Shortlist, 2

Viktor and Natalia bought $2020$ buckets of ice-cream and want to organize a degustation schedule with $2020$ rounds such that: - In every round, both of them try $1$ ice-cream, and those $2$ ice-creams tried in a single round are different from each other. - At the end of the $2020$ rounds, both of them have tried each ice-cream exactly once. We will call a degustation schedule fair if the number of ice-creams that were tried by Viktor before Natalia is equal to the number of ice creams tried by Natalia before Viktor. Prove that the number of fair schedules is strictly larger than $2020!(2^{1010} + (1010!)^2)$. [i]Proposed by Viktor Simjanoski, Macedonia [/i]

2009 Kosovo National Mathematical Olympiad, 5

In a circle four distinct points are fixed and each of them is assigned with a real number. Let those numbers be $x_1,x_2,x_3,x_4$ such that $x_1+x_2+x_3+x_4>0$. Now we define a game with these numbers: If one of them, i.e. $x_i$, is a negative number, the player makes a move by adding the number $x_i$ to his neighbors and changes the sign of the chosen number. The game ends when all the numbers are negative. Prove that this game ends in a finite number of steps.

1986 IMO Shortlist, 9

Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line $L$ parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on $L$ is not greater than $1$?

1975 All Soviet Union Mathematical Olympiad, 218

The world and the european champion are determined in the same tournament carried in one round. There are $20$ teams and $k$ of them are european. The european champion is determined according to the results of the games only between those $k$ teams. What is the greatest $k$ such that the situation, when the single european champion is the single world outsider, is possible if: a) it is hockey (draws allowed)? b) it is volleyball (no draws)?

2000 USAMO, 4

Find the smallest positive integer $n$ such that if $n$ squares of a $1000 \times 1000$ chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board.

2005 All-Russian Olympiad Regional Round, 8.8

8.8, 9.8, 11.8 a) 99 boxes contain apples and oranges. Prove that we can choose 50 boxes in such a way that they contain at least half of all apples and half of all oranges. b) 100 boxes contain apples and oranges. Prove that we can choose 34 boxes in such a way that they contain at least a third of all apples and a third of all oranges. c) 100 boxes contain apples, oranges and bananas. Prove that we can choose 51 boxes in such a way that they contain at least half of all apples, and half of all oranges and half of all bananas. ([i]I. Bogdanov, G. Chelnokov, E. Kulikov[/i])

2023 Princeton University Math Competition, A2 / B4

Let $\oplus$ denote the xor binary operation. Define $x \star y=(x+y)-(x\oplus y).$ Compute $$\sum_{k=1}^{63} (k \star 45).$$([i]Remark:[/i] The xor operation works as follows: when considered in binary, the $k$th binary digit of $a \oplus b$ is $1$ exactly when the $k$th binary digits of $a$ and $b$ are different. For example, $5 \oplus 12 = 0101_2 \oplus 1100_2=1001_2=9.$)

1968 Leningrad Math Olympiad, grade 7

[b]7.1[/b] A rectangle that is not a square is inscribed in a square. Prove that its semi-perimeter is equal to the diagonal of the square. [b]7.2[/b] Find five numbers whose pairwise sums are 0, 2, 4,5, 7, 9, 10, 12, 14, 17. [b]7.3 [/b] In a $1000$-digit number, all but one digit is a five. Prove that this number is not a perfect square. [b]7.4 / 6.5[/b] Several teams took part in the volleyball tournament. Team A is considered stronger than team B if either A beat B or there is a team C such that A beat C, and C beat B. Prove that if team T is the winner of the tournament, then it is the strongest the rest of the teams. [b]7.5[/b] In a pentagon $ABCDE$, $K$ is the midpoint of $AB$, $L$ is the midpoint of $BC$, $M$ is the midpoint of $CD$, $N$ is the midpoint of $DE$, $P$ is the midpoint of $KM$, $Q$ is the midpoint of $LN$. Prove that the segment $ PQ$ is parallel to side $AE$ and is equal to its quarter. [img]https://cdn.artofproblemsolving.com/attachments/2/5/be8e9b0692d98115dbad04f960e8a856dc593f.png[/img] [b]7.6 / 8.4[/b] Several circles are arbitrarily placed in a circle of radius $3$, the sum of their radii is $25$. Prove that there is a straight line that intersects at least $9$ of these circles. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988084_1968_leningrad_math_olympiad]here[/url].

2006 JBMO ShortLists, 14

Let $ n\ge 5$ be a positive integer. Prove that the set $ \{1,2,\ldots,n\}$ can be partitioned into two non-zero subsets $ S_n$ and $ P_n$ such that the sum of elements in $ S_n$ is equal to the product of elements in $ P_n$.