Found problems: 563
2019 Romania National Olympiad, 3
Find all natural numbers $ n\ge 4 $ that satisfy the property that the affixes of any nonzero pairwise distinct complex numbers $ a,b,c $ that verify the equation
$$ (a-b)^n+(b-c)^n+(c-a)^n=0, $$
represent the vertices of an equilateral triangle in the complex plane.
2022 Romania National Olympiad, P3
Let $Z\subset \mathbb{C}$ be a set of $n$ complex numbers, $n\geqslant 2.$ Prove that for any positive integer $m$ satisfying $m\leqslant n/2$ there exists a subset $U$ of $Z$ with $m$ elements such that\[\Bigg|\sum_{z\in U}z\Bigg|\leqslant\Bigg|\sum_{z\in Z\setminus U}z\Bigg|.\][i]Vasile Pop[/i]
2016 China Team Selection Test, 2
Find the smallest positive number $\lambda $ , such that for any complex numbers ${z_1},{z_2},{z_3}\in\{z\in C\big| |z|<1\}$ ,if $z_1+z_2+z_3=0$, then $$\left|z_1z_2 +z_2z_3+z_3z_1\right|^2+\left|z_1z_2z_3\right|^2 <\lambda .$$
2002 China Western Mathematical Olympiad, 3
In the complex plane, consider squares having the following property: the complex numbers its vertex correspond to are exactly the roots of integer coefficients equation $ x^4 \plus{} px^3 \plus{} qx^2 \plus{} rx \plus{} s \equal{} 0$. Find the minimum of square areas.
2020 China Team Selection Test, 1
Let $\omega$ be a $n$ -th primitive root of unity. Given complex numbers $a_1,a_2,\cdots,a_n$, and $p$ of them are non-zero. Let
$$b_k=\sum_{i=1}^n a_i \omega^{ki}$$
for $k=1,2,\cdots, n$. Prove that if $p>0$, then at least $\tfrac{n}{p}$ numbers in $b_1,b_2,\cdots,b_n$ are non-zero.
2004 AMC 12/AHSME, 16
A function $ f$ is defined by $ f(z) \equal{} i\bar z$, where $ i \equal{}\sqrt{\minus{}\!1}$ and $ \bar z$ is the complex conjugate of $ z$. How many values of $ z$ satisfy both $ |z| \equal{} 5$ and $ f (z) \equal{} z$?
$ \textbf{(A)}\ 0 \qquad
\textbf{(B)}\ 1 \qquad
\textbf{(C)}\ 2 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 8$
2001 Moldova Team Selection Test, 9
If $z\in\mathbb{C}$ is a solution of the equation $$x^n+a_1x^{n-1}+a_2x^{n-2}+\ldots+a_n=0$$ with real coefficients $0<a_n\leq a_{n-1}\leq\ldots\leq a_1<1$, show that $|z|<1$.
2004 Mediterranean Mathematics Olympiad, 4
Let $z_1, z_2, z_3$ be pairwise distinct complex numbers satisfying $|z_1| = |z_2| = |z_3| = 1$ and
\[\frac{1}{2 + |z_1 + z_2|}+\frac{1}{2 + |z_2 + z_3|}+\frac{1}{2 + |z_3 + z_1|} =1.\]
If the points $A(z_1),B(z_2),C(z_3)$ are vertices of an acute-angled triangle, prove that this triangle is equilateral.
2014 Harvard-MIT Mathematics Tournament, 32
Find all ordered pairs $(a,b)$ of complex numbers with $a^2+b^2\neq 0$, $a+\tfrac{10b}{a^2+b^2}=5$, and $b+\tfrac{10a}{a^2+b^2}=4$.
2014 District Olympiad, 1
Solve for $z\in \mathbb{C}$ the equation :
\[ |z-|z+1||=|z+|z-1|| \]
2003 Romania Team Selection Test, 5
Let $f\in\mathbb{Z}[X]$ be an irreducible polynomial over the ring of integer polynomials, such that $|f(0)|$ is not a perfect square. Prove that if the leading coefficient of $f$ is 1 (the coefficient of the term having the highest degree in $f$) then $f(X^2)$ is also irreducible in the ring of integer polynomials.
[i]Mihai Piticari[/i]
2003 Cuba MO, 8
Find all the functions $f : C \to R^+$ such that they fulfill simultaneously the following conditions:
$$(i) \ \ f(uv) = f(u)f(v) \ \ \forall u, v \in C$$
$$(ii) \ \ f(au) = |a | f(u) \ \ \forall a \in R, u \in C$$
$$(iii) \ \ f(u) + f(v) \le |u| + |v| \ \ \forall u, v \in C$$
2023 CIIM, 5
Given a positive integer $k > 1$, find all positive integers $n$ such that the polynomial $$P(z) = z^n + \sum_{j=0}^{2^k-2} z^j = 1 +z +z^2 + \cdots +z^{2^k-2} + z^n$$ has a complex root $w$ such that $|w| = 1$.
2012 Indonesia MO, 4
Given $2012$ distinct points $A_1,A_2,\dots,A_{2012}$ on the Cartesian plane. For any permutation $B_1,B_2,\dots,B_{2012}$ of $A_1,A_2,\dots,A_{2012}$ define the [i]shadow[/i] of a point $P$ as follows: [i]Point $P$ is rotated by $180^{\circ}$ around $B_1$ resulting $P_1$, point $P_1$ is rotated by $180^{\circ}$ around $B_2$ resulting $P_2$, ..., point $P_{2011}$ is rotated by $180^{\circ}$ around $B_{2012}$ resulting $P_{2012}$. Then, $P_{2012}$ is called the shadow of $P$ with respect to the permutation $B_1,B_2,\dots,B_{2012}$.[/i]
Let $N$ be the number of different shadows of $P$ up to all permutations of $A_1,A_2,\dots,A_{2012}$. Determine the maximum value of $N$.
[i]Proposer: Hendrata Dharmawan[/i]
1976 Spain Mathematical Olympiad, 5
Show that the equation
$$z^4 + 4(i + 1)z + 1 = 0$$
has a root in each quadrant of the complex plane.
2007 Harvard-MIT Mathematics Tournament, 9
The complex numbers $\alpha_1$, $\alpha_2$, $\alpha_3$, and $\alpha_4$ are the four distinct roots of the equation $x^4+2x^3+2=0$. Determine the unordered set \[\{\alpha_1\alpha_2+\alpha_3\alpha_4,\alpha_1\alpha_3+\alpha_2\alpha_4,\alpha_1\alpha_4+\alpha_2\alpha_3\}.\]
2024 Thailand Mathematical Olympiad, 7
Let $m$ and $n$ be positive integers for which $n\leq m\leq 2n$. Find the number of all complex solutions $(z_1,z_2,...,z_m)$ that satisfy
$$z_1^7+z_2^7+...+z_m^7=n$$
Such that $z_k^3-2z_k^2+2z_k-1=0$ for all $k=1,2,...,m$.
2012 District Olympiad, 4
For all odd natural numbers $ n, $ prove that
$$ \left|\sum_{j=0}^{n-1} (a+ib)^j\right|\in\mathbb{Q} , $$
where $ a,b\in\mathbb{Q} $ are two numbers such that $ 1=a^2+b^2. $
1985 Traian Lălescu, 2.3
Let $ z_1,z_2,z_3\in\mathbb{C} , $ different two by two, having the same modulus $ \rho . $ Show that:
$$ \frac{1}{\left| z_1-z_2\right|\cdot \left| z_1-z_3\right|} +\frac{1}{\left| z_2-z_1\right|\cdot \left| z_2-z_3\right|} +\frac{1}{\left| z_3-z_1\right|\cdot \left| z_3-z_2\right|}\ge\frac{1}{\rho^2} . $$
2019 AIME Problems, 10
For distinct complex numbers $z_1,z_2,\dots,z_{673}$, the polynomial
\[ (x-z_1)^3(x-z_2)^3 \cdots (x-z_{673})^3 \]
can be expressed as $x^{2019} + 20x^{2018} + 19x^{2017}+g(x)$, where $g(x)$ is a polynomial with complex coefficients and with degree at most $2016$. The value of
\[ \left| \sum_{1 \le j <k \le 673} z_jz_k \right| \]
can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2025 AIME, 8
Let $k$ be a real number such that the system \begin{align*} &|25+20i-z|=5\\ &|z-4-k|=|z-3i-k| \\ \end{align*} has exactly one complex solution $z.$ The sum of all possible values of $k$ can be written as $\dfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$ Here $i=\sqrt{-1}.$
2004 Romania Team Selection Test, 16
Three circles $\mathcal{K}_1$, $\mathcal{K}_2$, $\mathcal{K}_3$ of radii $R_1,R_2,R_3$ respectively, pass through the point $O$ and intersect two by two in $A,B,C$. The point $O$ lies inside the triangle $ABC$.
Let $A_1,B_1,C_1$ be the intersection points of the lines $AO,BO,CO$ with the sides $BC,CA,AB$ of the triangle $ABC$. Let $ \alpha = \frac {OA_1}{AA_1} $, $ \beta= \frac {OB_1}{BB_1} $ and $ \gamma = \frac {OC_1}{CC_1} $ and let $R$ be the circumradius of the triangle $ABC$. Prove that
\[ \alpha R_1 + \beta R_2 + \gamma R_3 \geq R. \]
1999 IMC, 1
a) Show that $\forall n \in \mathbb{N}_0, \exists A \in \mathbb{R}^{n\times n}: A^3=A+I$.
b) Show that $\det(A)>0, \forall A$ fulfilling the above condition.
1953 Czech and Slovak Olympiad III A, 1
Find the locus of all numbers $z\in\mathbb C$ in complex plane satisfying $$z+\bar z=a\cdot|z|,$$ where $a\in\mathbb R$ is given.
2022 AIME Problems, 4
Let $w = \frac{\sqrt{3}+i}{2}$ and $z=\frac{-1+i\sqrt{3}}{2}$, where $i=\sqrt{-1}$. Find the number of ordered pairs $(r, s)$ of positive integers not exceeding $100$ that satisfy the equation $i\cdot w^r=z^s$.