This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

2024 Iran MO (3rd Round), 2

A surjective function $g: \mathbb{C} \to \mathbb C$ is given. Find all functions $f: \mathbb{C} \to \mathbb C$ such that for all $x,y\in \mathbb C$ we have $$ |f(x)+g(y)| = | f(y) + g(x)|. $$ Proposed by [i]Mojtaba Zare, Amirabbas Mohammadi[/i]

2008 iTest Tournament of Champions, 3

A regular $2008$-gon is located in the Cartesian plane such that $(x_1,y_1)=(p,0)$ and $(x_{1005},y_{1005})=(p+2,0)$, where $p$ is prime and the vertices, \[(x_1,y_1),(x_2,y_2),(x_3,y_3),\cdots,(x_{2008},y_{2008}),\] are arranged in counterclockwise order. Let \begin{align*}S&=(x_1+y_1i)(x_3+y_3i)(x_5+y_5i)\cdots(x_{2007}+y_{2007}i),\\T&=(y_2+x_2i)(y_4+x_4i)(y_6+x_6i)\cdots(y_{2008}+x_{2008}i).\end{align*} Find the minimum possible value of $|S-T|$.

2024 District Olympiad, P3

Let $a,b,c\in\mathbb{C}\setminus\left\{0\right\}$ such that $|a|=|b|=|c|$ and $A=a+b+c$ respectively $B=abc$ are both real numbers. Prove that $ C_n=a^n+b^n+c^n$ is also a real number$,$ $(\forall)n\in\mathbb{N}.$

1993 AMC 12/AHSME, 20

Consider the equation $10z^2-3iz-k=0$, where $z$ is a complex variable and $i^2=-1$. Which of the following statements is true? $ \textbf{(A)}\ \text{For all positive real numbers}\ k,\ \text{both roots are pure imaginary.} \\ \qquad\textbf{(B)}\ \text{For all negative real numbers}\ k,\ \text{both roots are pure imaginary.} \\ \qquad\textbf{(C)}\ \text{For all pure imaginary numbers}\ k,\ \text{both roots are real and rational.} \\ \qquad\textbf{(D)}\ \text{For all pure imaginary numbers}\ k,\ \text{both roots are real and irrational.} \\ \qquad\textbf{(E)}\ \text{For all complex numbers}\ k,\ \text{neither root is real.} $

2011 District Olympiad, 3

Let be two complex numbers $ a,b. $ Show that the following affirmations are equivalent: $ \text{(i)} $ there are four numbers $ x_1,x_2,x_3,x_4\in\mathbb{C} $ such that $ \big| x_1 \big| =\big| x_3 \big|, \big| x_2 \big| =\big| x_4 \big|, $ and $$ x_{j_1}^2-ax_{j_1}+b=0=x_{j_2}^2-bx_{j_2}+a,\quad\forall j_1\in\{ 1,2\} ,\quad\forall j_2\in\{ 3,4\} . $$ $ \text{(ii)} a^3=b^3 $ or $ b=\overline{a} $ (the conjugate of a).

2015 China Western Mathematical Olympiad, 7

Let $a\in (0,1)$, $f(z)=z^2-z+a, z\in \mathbb{C}$. Prove the following statement holds: For any complex number z with $|z| \geq 1$, there exists a complex number $z_0$ with $|z_0|=1$, such that $|f(z_0)| \leq |f(z)|$.

2021 239 Open Mathematical Olympiad, 5

Let $a,b,c$ be some complex numbers. Prove that $$|\dfrac{a^2}{ab+ac-bc}| + |\dfrac{b^2}{ba+bc-ac}| + |\dfrac{c^2}{ca+cb-ab}| \ge \dfrac{3}{2}$$ if the denominators are not 0

2008 Gheorghe Vranceanu, 1

Find the complex numbers $ a,b $ having the properties that $ |a|=|b|=1=\bar{a} +\bar{b} -ab. $

2014 Brazil Team Selection Test, 4

Let $ABCDEF$ be a convex hexagon with $AB=DE$, $BC=EF$, $CD=FA$, and $\angle A-\angle D = \angle C -\angle F = \angle E -\angle B$. Prove that the diagonals $AD$, $BE$, and $CF$ are concurrent.

2006 Italy TST, 3

Let $P(x)$ be a polynomial with complex coefficients such that $P(0)\neq 0$. Prove that there exists a multiple of $P(x)$ with real positive coefficients if and only if $P(x)$ has no real positive root.

2009 Stanford Mathematics Tournament, 11

Let $z_1$ and $z_2$ be the zeros of the polynomial $f(x) = x^2 + 6x + 11$. Compute $(1 + z^2_1z_2)(1 + z_1z_2^2)$.

2011 Kosovo National Mathematical Olympiad, 1

The complex numbers $z_1$ and $z_2$ are given such that $z_1=-1+i$ and $z_2=2+4i$. Find the complex number $z_3$ such that $z_1,z_2,z_3$ are the points of an equilateral triangle. How many solutions do we have ?

2023 Harvard-MIT Mathematics Tournament, 10

Let $\zeta= e^{2\pi i/99}$ and $\omega e^{2\pi i/101}$. The polynomial $$x^{9999} + a_{9998}x^{9998} + ...+ a_1x + a_0$$ has roots $\zeta^m + \omega^n$ for all pairs of integers $(m, n)$ with $0 \le m < 99$ and $0 \le n < 101$. Compute $a_{9799} + a_{9800} + ...+ a_{9998}$.

1999 National High School Mathematics League, 8

If $\theta=\arctan \frac{5}{12}$, $z=\frac{\cos 2\theta+\text{i}\sin2\theta}{239+\text{i}}$, then $\arg z=$________.

1983 AIME Problems, 5

Suppose that the sum of the squares of two complex numbers $x$ and $y$ is 7 and the sum of the cubes is 10. What is the largest real value that $x + y$ can have?

1980 AMC 12/AHSME, 17

Given that $i^2=-1$, for how many integers $n$ is $(n+i)^4$ an integer? $\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ 3 \qquad \text{(E)} \ 4$

2017 CIIM, Problem 1

Determine all the complex numbers $w = a + bi$ with $a, b \in \mathbb{R}$, such that there exists a polinomial $p(z)$ whose coefficients are real and positive such that $p(w) = 0.$

2011 APMO, 3

Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .

2014 Bulgaria National Olympiad, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $k$. $AC$ and $BD$ meet at $E$. The rays $\overrightarrow{CB}, \overrightarrow{DA}$ meet at $F$. Prove that the line through the incenters of $\triangle ABE\,,\, \triangle ABF$ and the line through the incenters of $\triangle CDE\,,\, \triangle CDF$ meet at a point lying on the circle $k$. [i]Proposed by N. Beluhov[/i]

2012 Kyrgyzstan National Olympiad, 3

Prove that if the diagonals of a convex quadrilateral are perpendicular, then the feet of perpendiculars dropped from the intersection point of diagonals on the sides of this quadrilateral lie on one circle. Is the converse true?

2011-2012 SDML (High School), 4

What is the imaginary part of the complex number $\frac{-4+7i}{1+2i}$? $\text{(A) }-\frac{1}{2}\qquad\text{(B) }2\qquad\text{(C) }3\qquad\text{(D) }\frac{7}{2}\qquad\text{(E) }-\frac{18}{5}$

2012 Harvard-MIT Mathematics Tournament, 4

During the weekends, Eli delivers milk in the complex plane. On Saturday, he begins at $z$ and delivers milk to houses located at $z^3,z^5,z^7,\ldots,z^{2013}$ in that order; on Sunday, he begins at $1$ and delivers milk to houses located at $z^2,z^4,z^6,\ldots,z^{2012}$ in that order. Eli always walks directly (in a straight line) between two houses. If the distance he must travel from his starting point to the last house is $\sqrt{2012}$ on both days, find the real part of $z^2$.

2005 Gheorghe Vranceanu, 2

Let be a natural number $ n\ge 2 $ and a real number $ r>1. $ Determine the natural numbers $ k $ having the property that the affixes of $ r^ke^{\pi ki/n} ,r^{k+1}e^{\pi (k+1)i/n} ,r^{k+n}e^{\pi (k+n)i/n} ,r^{k+n+1}e^{\pi (k+n+1) i/n} $ in the complex plane represent the vertices of a trapezoid.

1967 IMO Longlists, 21

Without using tables, find the exact value of the product: \[P = \prod^7_{k=1} \cos \left(\frac{k \pi}{15} \right).\]

2013 Harvard-MIT Mathematics Tournament, 4

Determine all real values of $A$ for which there exist distinct complex numbers $x_1$, $x_2$ such that the following three equations hold: \begin{align*}x_1(x_1+1)&=A\\x_2(x_2+1)&=A\\x_1^4+3x_1^3+5x_1&=x_2^4+3x_2^3+5x_2.\end{align*}