This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 38

1987 IMO Shortlist, 13

Is it possible to put $1987$ points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a non-degenerate triangle with rational area? [i](IMO Problem 5)[/i] [i]Proposed by Germany, DR[/i]

2015 Mathematical Talent Reward Programme, MCQ: P 14

$z=x+i y$ where $x$ and $y$ are two real numbers. Find the locus of the point $(x, y)$ in the plane, for which $\frac{z+i}{z-i}$ is purely imaginary (that is, it is of the form $i b$ where $b$ is a real number). [Here, $i=\sqrt{-1}$ [list=1] [*] A straight line [*] A circle [*] A parabole [*] None of these [/list]

2023 AMC 12/AHSME, 9

What is the area of the region in the coordinate plane defined by the inequality \[\left||x|-1\right|+\left||y|-1\right|\leq 1?\] $\textbf{(A)}~4\qquad\textbf{(B)}~8\qquad\textbf{(C)}~10\qquad\textbf{(D)}~12\qquad\textbf{(E)}~15$

1985 IMO Longlists, 44

For which integers $n \geq 3$ does there exist a regular $n$-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?

2004 India IMO Training Camp, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2015 Argentina National Olympiad, 3

Consider the points $O = (0,0), A = (- 2,0)$ and $B = (0,2)$ in the coordinate plane. Let $E$ and $F$ be the midpoints of $OA$ and $OB$ respectively. We rotate the triangle $OEF$ with a center in $O$ clockwise until we obtain the triangle $OE'F'$ and, for each rotated position, let $P = (x, y)$ be the intersection of the lines $AE'$ and $BF'$. Find the maximum possible value of the $y$-coordinate of $P$.

2016 All-Russian Olympiad, 4

There is three-dimensional space. For every integer $n$ we build planes $ x \pm y\pm z = n$. All space is divided on octahedrons and tetrahedrons. Point $(x_0,y_0,z_0)$ has rational coordinates but not lies on any plane. Prove, that there is such natural $k$ , that point $(kx_0,ky_0,kz_0)$ lies strictly inside the octahedron of partition.

2023 AMC 10, 24

What is the perimeter of the boundary of the region consisting of all points which can be expressed as $(2u-3w,v+4w)$ with $0 \le u \le 1$, $0 \le v \le 1$, and $0 \le w \le 1$? \\ \\ $\textbf{(A) } 10\sqrt{3} \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 16$

2004 India IMO Training Camp, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2020-21 IOQM India, 24

Q. A light source at the point $(0, 16)$ in the co-ordinate plane casts light in all directions. A disc(circle along ith it's interior) of radius $2$ with center at $(6, 10)$ casts a shadow on the X-axis. The length of the shadow can be written in the form $m\sqrt{n}$ where $m, n$ are positive integers and $n$ is squarefree. Find $m + n$.

Ukrainian From Tasks to Tasks - geometry, 2015.5

A coordinate system was constructed on the board, points $A (1,2)$ and B $(3, 1)$ were marked, and then the coordinate system was erased. Restore the coordinate system at the two marked points.

2022 AMC 10, 25

Let $R$, $S$, and $T$ be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the x-axis. The left edge of $R$ and the right edge of $S$ are on the $y$-axis, and $R$ contains $\frac{9}{4}$ as many lattice points as does $S$. The top two vertices of $T$ are in $R \cup S$, and $T$ contains $\frac{1}{4}$ of the lattice points contained in $R \cup S$. See the figure (not drawn to scale). [asy] //kaaaaaaaaaante314 size(8cm); import olympiad; label(scale(.8)*"$y$", (0,60), N); label(scale(.8)*"$x$", (60,0), E); filldraw((0,0)--(55,0)--(55,55)--(0,55)--cycle, yellow+orange+white+white); label(scale(1.3)*"$R$", (55/2,55/2)); filldraw((0,0)--(0,28)--(-28,28)--(-28,0)--cycle, green+white+white); label(scale(1.3)*"$S$",(-14,14)); filldraw((-10,0)--(15,0)--(15,25)--(-10,25)--cycle, red+white+white); label(scale(1.3)*"$T$",(3.5,25/2)); draw((0,-10)--(0,60),EndArrow(TeXHead)); draw((-34,0)--(60,0),EndArrow(TeXHead));[/asy] The fraction of lattice points in $S$ that are in $S \cap T$ is 27 times the fraction of lattice points in $R$ that are in $R \cap T$. What is the minimum possible value of the edge length of $R$ plus the edge length of $S$ plus the edge length of $T$? $\textbf{(A) }336\qquad\textbf{(B) }337\qquad\textbf{(C) }338\qquad\textbf{(D) }339\qquad\textbf{(E) }340$

2023 AMC 10, 13

What is the area of the region in the coordinate plane defined by the inequality \[\left||x|-1\right|+\left||y|-1\right|\leq 1?\] $\textbf{(A)}~4\qquad\textbf{(B)}~8\qquad\textbf{(C)}~10\qquad\textbf{(D)}~12\qquad\textbf{(E)}~15$