This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 401

1970 IMO Shortlist, 12

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

2021 BMT, 10

Let $N$ be the number of ways to draw 22 straight edges between 10 labeled points, of which no three are collinear, such that no triangle with vertices among these 10 points is created, and there is at most one edge between any two labeled points. Compute $\dfrac{N}{9!}$.

1967 IMO Shortlist, 6

On the circle with center 0 and radius 1 the point $A_0$ is fixed and points $A_1, A_2, \ldots, A_{999}, A_{1000}$ are distributed in such a way that the angle $\angle A_00A_k = k$ (in radians). Cut the circle at points $A_0, A_1, \ldots, A_{1000}.$ How many arcs with different lengths are obtained. ?

1992 IMO Longlists, 61

There are a board with $2n \cdot 2n \ (= 4n^2)$ squares and $4n^2-1$ cards numbered with different natural numbers. These cards are put one by one on each of the squares. One square is empty. We can move a card to an empty square from one of the adjacent squares (two squares are adjacent if they have a common edge). Is it possible to exchange two cards on two adjacent squares of a column (or a row) in a finite number of movements?

1967 IMO Longlists, 30

Given $m+n$ numbers: $a_i,$ $i = 1,2, \ldots, m,$ $b_j$, $j = 1,2, \ldots, n,$ determine the number of pairs $(a_i,b_j)$ for which $|i-j| \geq k,$ where $k$ is a non-negative integer.

2013 India IMO Training Camp, 1

Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order. We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.

1966 IMO Shortlist, 47

Consider all segments dividing the area of a triangle $ABC$ in two equal parts. Find the length of the shortest segment among them, if the side lengths $a,$ $b,$ $c$ of triangle $ABC$ are given. How many of these shortest segments exist ?

2005 AMC 12/AHSME, 25

Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex? $ \textbf{(A)}\ \frac {5}{256} \qquad \textbf{(B)}\ \frac {21}{1024} \qquad \textbf{(C)}\ \frac {11}{512} \qquad \textbf{(D)}\ \frac {23}{1024} \qquad \textbf{(E)}\ \frac {3}{128}$

2025 Euler Olympiad, Round 1, 10

There are 12 gold stars arranged in a circle on a blue background. Giorgi wants to label each star with one of the letters $G$, $E$, or $O$, such that no two consecutive stars have the same letter. Determine the number of distinct ways Giorgi can label the stars. [img]https://i.imgur.com/qIxdJ8j.jpeg[/img] [i]Proposed by Giorgi Arabidze, Georgia [/i]

2019 AMC 12/AHSME, 13

Tags: counting
How many ways are there to paint each of the integers $2, 3, \dots, 9$ either red, green, or blue so that each number has a different color from each of its proper divisors? $\textbf{(A)}\ 144\qquad\textbf{(B)}\ 216\qquad\textbf{(C)}\ 256\qquad\textbf{(D)}\ 384\qquad\textbf{(E)}\ 432$

2013 Harvard-MIT Mathematics Tournament, 8

In a game, there are three indistinguishable boxes; one box contains two red balls, one contains two blue balls, and the last contains one ball of each color. To play, Raj first predicts whether he will draw two balls of the same color or two of different colors. Then, he picks a box, draws a ball at random, looks at the color, and replaces the ball in the same box. Finally, he repeats this; however, the boxes are not shuffled between draws, so he can determine whether he wants to draw again from the same box. Raj wins if he predicts correctly; if he plays optimally, what is the probability that he will win?

2005 AIME Problems, 2

A hotel packed breakfast for each of three guests. Each breakfast should have consisted of three types of rolls, one each of nut, cheese, and fruit rolls. The preparer wrapped each of the nine rolls and once wrapped, the rolls were indistinguishable from one another. She then randomly put three rolls in a bag for each of the guests. Given that the probability each guest got one roll of each type is $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find $m+n$.

2000 IMO Shortlist, 3

Let $ n \geq 4$ be a fixed positive integer. Given a set $ S \equal{} \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\] Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$

2022 AMC 10, 9

Tags: counting
A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible? [asy] size(5.5cm); draw((0,0)--(0,2)--(2,2)--(2,0)--cycle); draw((2,0)--(8,0)--(8,2)--(2,2)--cycle); draw((8,0)--(12,0)--(12,2)--(8,2)--cycle); draw((0,2)--(6,2)--(6,4)--(0,4)--cycle); draw((6,2)--(12,2)--(12,4)--(6,4)--cycle); [/asy] $\textbf{(A) }120\qquad\textbf{(B) }270\qquad\textbf{(C) }360\qquad\textbf{(D) }540\qquad\textbf{(E) }720$

2021 EGMO, 6

Does there exist a nonnegative integer $a$ for which the equation \[\left\lfloor\frac{m}{1}\right\rfloor + \left\lfloor\frac{m}{2}\right\rfloor + \left\lfloor\frac{m}{3}\right\rfloor + \cdots + \left\lfloor\frac{m}{m}\right\rfloor = n^2 + a\] has more than one million different solutions $(m, n)$ where $m$ and $n$ are positive integers? [i]The expression $\lfloor x\rfloor$ denotes the integer part (or floor) of the real number $x$. Thus $\lfloor\sqrt{2}\rfloor = 1, \lfloor\pi\rfloor =\lfloor 22/7 \rfloor = 3, \lfloor 42\rfloor = 42,$ and $\lfloor 0 \rfloor = 0$.[/i]

2015 India Regional MathematicaI Olympiad, 6

Let $S=\{1,2,\cdots, n\}$ and let $T$ be the set of all ordered triples of subsets of $S$, say $(A_1, A_2, A_3)$, such that $A_1\cup A_2\cup A_3=S$. Determine, in terms of $n$, \[ \sum_{(A_1,A_2,A_3)\in T}|A_1\cap A_2\cap A_3|\]

2008 AMC 10, 22

Three red beads, two white beads, and one blue bead are placed in a line in random order. What is the probability that no two neighboring beads are the same color? $ \textbf{(A)}\ \frac{1}{12} \qquad \textbf{(B)}\ \frac{1}{10} \qquad \textbf{(C)}\ \frac{1}{6} \qquad \textbf{(D)}\ \frac{1}{3} \qquad \textbf{(E)}\ \frac{1}{2}$

2018 Korea National Olympiad, 2

For a positive integer $n$, denote $p(n)$ to be the number of nonnegative integer tuples $(x,y,z,w)$ such that $x+y+2z+3w=n-1$. Also, denote $q(n)$ to be the number of nonnegative integer tuples $(a,b,c,d)$ such that (i). $a+b+c+d=n$. (ii). $a \ge b$, $c \ge d$, $a \ge d$. (iii). $b < c$. Prove that for all $n$, $p(n) = q(n)$.

2023 Romania EGMO TST, P1

In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$

1981 IMO Shortlist, 5

A cube is assembled with $27$ white cubes. The larger cube is then painted black on the outside and disassembled. A blind man reassembles it. What is the probability that the cube is now completely black on the outside? Give an approximation of the size of your answer.

2012 Centers of Excellency of Suceava, 2

Find the number of unordered choices of $ k $ lists, each having $ m $ distinct ordered objects, among a number of $ mn $ objects. [i]Cătălin Țigăeru[/i]

2001 IMO Shortlist, 5

Find all finite sequences $(x_0, x_1, \ldots,x_n)$ such that for every $j$, $0 \leq j \leq n$, $x_j$ equals the number of times $j$ appears in the sequence.

2020 Israel National Olympiad, 2

202 participants arrived at a mathematical conference from three countries: Israel, Greece, and Japan. On the first day of the conference, every pair of participants from the same country shook hands. On the second day, every pair of participants exactly one of whom was Israeli shook hands. On the third day, every pair of participants one of whom was Israeli and the other Greek shook hands. In total 20200 handshakes occurred. How many Israelis participated in the conference?

1969 IMO Longlists, 51

$(NET 6)$ A curve determined by $y =\sqrt{x^2 - 10x+ 52}, 0\le x \le 100,$ is constructed in a rectangular grid. Determine the number of squares cut by the curve.

2015 AMC 10, 20

Erin the ant starts at a given corner of a cube and crawls along exactly $7$ edges in such a way that she visits every corner exactly once and then finds that she is unable to return along an edge to her starting point. How many paths are there meeting these conditions? $ \textbf{(A) }\text{6}\qquad\textbf{(B) }\text{9}\qquad\textbf{(C) }\text{12}\qquad\textbf{(D) }\text{18}\qquad\textbf{(E) }\text{24} $