This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 130

1997 Poland - Second Round, 6

Let eight points be given in a unit cube. Prove that two of these points are on a distance not greater than $1$.

2017 Bundeswettbewerb Mathematik, 4

We call a positive integer [i]heinersch[/i] if it can be written as the sum of a positive square and positive cube. Prove: There are infinitely many heinersch numbers $h$, such that $h-1$ and $h+1$ are also heinersch.

2020 BMT Fall, 3

An ant is at one corner of a unit cube. If the ant must travel on the box’s surface, the shortest distance the ant must crawl to reach the opposite corner of the cube can be written in the form $\sqrt{a}$, where $a$ is a positive integer. Compute $a$.

2004 Junior Balkan Team Selection Tests - Romania, 4

Consider a cube and let$ M, N$ be two of its vertices. Assign the number $1$ to these vertices and $0$ to the other six vertices. We are allowed to select a vertex and to increase with a unit the numbers assigned to the $3$ adjiacent vertices - call this a [i]movement[/i]. Prove that there is a sequence of [i]movements [/i] after which all the numbers assigned to the vertices of the cube became equal if and only if $MN$ is not a diagonal of a face of the cube. Marius Ghergu, Dinu Serbanescu

2020 Yasinsky Geometry Olympiad, 6

A cube whose edge is $1$ is intersected by a plane that does not pass through any of its vertices, and its edges intersect only at points that are the midpoints of these edges. Find the area of the formed section. Consider all possible cases. (Alexander Shkolny)

1960 IMO Shortlist, 5

Consider the cube $ABCDA'B'C'D'$ (with face $ABCD$ directly above face $A'B'C'D'$). a) Find the locus of the midpoints of the segments $XY$, where $X$ is any point of $AC$ and $Y$ is any piont of $B'D'$; b) Find the locus of points $Z$ which lie on the segment $XY$ of part a) with $ZY=2XZ$.

1993 Tournament Of Towns, (361) 4

An ant crawls along the edges of a cube turning only at its vertices. It has visited one of the vertices $25$ times. Is it possible that it has visited each of the other $7$ vertices exactly $20$ times? (S Tokarev)

1982 All Soviet Union Mathematical Olympiad, 330

A nonnegative real number is written at every cube's vertex. The sum of those numbers equals to $1$. Two players choose in turn faces of the cube, but they cannot choose the face parallel to already chosen one (the first moves twice, the second -- once). Prove that the first player can provide the number, at the common for three chosen faces vertex, to be not greater than $1/6$.

2018 Malaysia National Olympiad, A5

Daud want to paint some faces of a cube with green paint. At least one face must be painted. How many ways are there for him to paint the cube? Note: Two colorings are considered the same if one can be obtained from the other by rotation.

2010 District Olympiad, 3

Consider the cube $ABCDA'B'C'D'$. The bisectors of the angles $\angle A' C'A$ and $\angle A' AC'$ intersect $AA'$ and $A'C$ in the points $P$, respectively $S$. The point $M$ is the foot of the perpendicular from $A'$ on $CP$ , and $N$ is the foot of the perpendicular from $A'$ to $AS$. Point $O$ is the center of the face $ABB'A'$ a) Prove that the planes $(MNO)$ and $(AC'B)$ are parallel. b) Calculate the distance between these planes, knowing that $AB = 1$.

2011 BAMO, 3

Consider the $8\times 8\times 8$ Rubik’s cube below. Each face is painted with a different color, and it is possible to turn any layer, as you can with smaller Rubik’s cubes. Let $X$ denote the move that turns the shaded layer shown (indicated by arrows going from the top to the right of the cube) clockwise by $90$ degrees, about the axis labeled $X$. When move $X$ is performed, the only layer that moves is the shaded layer. Likewise, define move $Y$ to be a clockwise $90$-degree turn about the axis labeled Y, of just the shaded layer shown (indicated by the arrows going from the front to the top, where the front is the side pierced by the $X$ rotation axis). Let $M$ denote the move “perform $X$, then perform $Y$.” [img]https://cdn.artofproblemsolving.com/attachments/e/f/951ea75a3dbbf0ca23c45cd8da372595c2de48.png[/img] Imagine that the cube starts out in “solved” form (so each face has just one color), and we start doing move $M$ repeatedly. What is the least number of repeats of $M$ in order for the cube to be restored to its original colors?

1969 IMO Longlists, 39

$(HUN 6)$ Find the positions of three points $A,B,C$ on the boundary of a unit cube such that $min\{AB,AC,BC\}$ is the greatest possible.

2013 German National Olympiad, 4

Let $ABCDEFGH$ be a cube of sidelength $a$ and such that $AG$ is one of the space diagonals. Consider paths on the surface of this cube. Then determine the set of points $P$ on the surface for which the shortest path from $P$ to $A$ and from $P$ to $G$ have the same length $l.$ Also determine all possible values of $l$ depending on $a.$

Kyiv City MO 1984-93 - geometry, 1993.11.3

Two cubes are inscribed in a sphere of radius $R$. Calculate the sum of squares of all segments connecting the vertices of one cube with the vertices of the other cube

1999 Poland - Second Round, 2

A cube of edge $2$ with one of the corner unit cubes removed is called a [i]piece[/i]. Prove that if a cube $T$ of edge $2^n$ is divided into $2^{3n}$ unit cubes and one of the unit cubes is removed, then the rest can be cut into [i]pieces[/i].

1984 Czech And Slovak Olympiad IIIA, 1

A cube $A_1A_2A_3A_4A_5A_6A_7A_8$ is given in space. We will mark its center with the letter $S$ (intersection of solid diagonals). Find all natural numbers $k$ for which there exists a plane not containing the point $S$ and intersecting just $k$ of the rays $SA_1, SA_2, .. SA_8$

2018 Hanoi Open Mathematics Competitions, 9

How many ways of choosing four edges in a cube such that any two among those four choosen edges have no common point.

1966 IMO Longlists, 57

Is it possible to choose a set of $100$ (or $200$) points on the boundary of a cube such that this set is fixed under each isometry of the cube into itself? Justify your answer.

2003 Portugal MO, 1

The planet Caramelo is a cube with a $1$ km edge. This planet is going to be wrapped with foam anti-gluttons in order to prevent the presence of greedy ships less than $500$ meters from the planet. What the minimum volume of foam that must surround the planet?

2005 Abels Math Contest (Norwegian MO), 2a

In an aquarium there are nine small fish. The aquarium is cube shaped with a side length of two meters and is completely filled with water. Show that it is always possible to find two small fish with a distance of less than $\sqrt3$ meters.

1962 IMO Shortlist, 3

Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.

2021 BMT, T2

Compute the radius of the largest circle that fits entirely within a unit cube.

2016 Romania National Olympiad, 2

In a cube $ABCDA'B'C'D' $two points are considered, $M \in (CD')$ and $N \in (DA')$. Show that the $MN$ is common perpendicular to the lines $CD'$ and $DA'$ if and only if $$\frac{D'M}{D'C}=\frac{DN}{DA'} =\frac{1}{3}.$$

2018 District Olympiad, 3

Let $ABCDA'B'C'D'$ be the rectangular parallelepiped. Let $M, N, P$ be midpoints of the edges $[AB], [BC],[BB']$ respectively . Let $\{O\} = A'N \cap C'M$. a) Prove that the points $D, O, P$ are collinear. b) Prove that $MC' \perp (A'PN)$ if and only if $ABCDA'B'C'D'$ is a cube.

2022 Olimphíada, 1

Let $n$ and $p$ be positive integers, with $p>3$ prime, such that: i) $n\mid p-3;$ ii) $p\mid (n+1)^3-1.$ Show that $pn+1$ is the cube of an integer.