Found problems: 670
2016 EGMO, 2
Let $ABCD$ be a cyclic quadrilateral, and let diagonals $AC$ and $BD$ intersect at $X$.Let $C_1,D_1$ and $M$ be the midpoints of segments $CX,DX$ and $CD$, respecctively. Lines $AD_1$ and $BC_1$ intersect at $Y$, and line $MY$ intersects diagonals $AC$ and $BD$ at different points $E$ and $F$, respectively. Prove that line $XY$ is tangent to the circle through $E,F$ and $X$.
2019 Sharygin Geometry Olympiad, 6
Two quadrilaterals $ABCD$ and $A_1B_1C_1D_1$ are mutually symmetric with respect to the point $P$. It is known that $A_1BCD$, $AB_1CD$ and $ABC_1D$ are cyclic quadrilaterals. Prove that the quadrilateral $ABCD_1$ is also cyclic
2010 Peru IMO TST, 8
Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$.
[i]Proposed by David Monk, United Kingdom[/i]
2011 Sharygin Geometry Olympiad, 20
Quadrilateral $ABCD$ is circumscribed around a circle with center $I$. Points $M$ and $N$ are the midpoints of diagonals $AC$ and $BD$. Prove that $ABCD$ is cyclic quadrilateral if and only if $IM : AC = IN : BD$.
[i]Nikolai Beluhov and Aleksey Zaslavsky[/i]
2016 Iran MO (3rd Round), 2
Given $\triangle ABC$ inscribed in $(O)$ an let $I$ and $I_a$ be it's incenter and $A$-excenter ,respectively.
Tangent lines to $(O)$ at $C,B$ intersect the angle bisector of $A$ at $M,N$ ,respectively.
Second tangent lines through $M,N$ intersect $(O)$ at $X,Y$.
Prove that $XYII_a$ is cyclic.
2011 Sharygin Geometry Olympiad, 4
Quadrilateral $ABCD$ is inscribed into a circle with center $O$. The bisectors of its angles form a cyclic quadrilateral with circumcenter $I$, and its external bisectors form a cyclic quadrilateral with circumcenter $J$. Prove that $O$ is the midpoint of $IJ$.
2019 Greece Junior Math Olympiad, 2
Let $ABCD$ be a quadrilateral inscribed in circle of center $O$. The perpendicular on the midpoint $E$ of side $BC$ intersects line $AB$ at point $Z$. The circumscribed circle of the triangle $CEZ$, intersects the side $AB$ for the second time at point $H$ and line $CD$ at point $G$ different than $D$. Line $EG$ intersects line $AD$ at point $K$ and line $CH$ at point $L$. Prove that the points $A,H,L,K$ are concyclic, e.g. lie on the same circle.
2000 Mongolian Mathematical Olympiad, Problem 6
In a triangle $ABC$, the angle bisector at $A,B,C$ meet the opposite sides at $A_1,B_1,C_1$, respectively. Prove that if the quadrilateral $BA_1B_1C_1$ is cyclic, then
$$\frac{AC}{AB+BC}=\frac{AB}{AC+CB}+\frac{BC}{BA+AC}.$$
2014 Purple Comet Problems, 26
Let $ABCD$ be a cyclic quadrilateral with $AB = 1$, $BC = 2$, $CD = 3$, $DA = 4$. Find the square of the area of quadrilateral $ABCD$.
2007 Tournament Of Towns, 2
Let $K, L, M$ and $N$ be the midpoints of the sides $AB, BC, CD$ and $DA$ of a cyclic quadrilateral $ABCD$. Let $P$ be the point of intersection of $AC$ and $BD$. Prove that the circumradii of triangles $PKL, PLM, PMN$ and $PNK$ are equal to one another.
1990 APMO, 1
Given triangle $ABC$, let $D$, $E$, $F$ be the midpoints of $BC$, $AC$, $AB$ respectively and let $G$ be the centroid of the triangle. For each value of $\angle BAC$, how many non-similar triangles are there in which $AEGF$ is a cyclic quadrilateral?
2012 ELMO Shortlist, 2
In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$.
a) Prove $SX,TY, AD$ are concurrent at a point $Z$.
b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$.
[i]Ray Li.[/i]
2017 Azerbaijan Team Selection Test, 2
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
2018 Balkan MO Shortlist, G5
Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide.
by Evangelos Psychas, Greece
2001 South africa National Olympiad, 5
Starting from a given cyclic quadrilateral $\mathcal{Q}_0$, a sequence of quadrilaterals is constructed so that $\mathcal{Q}_{k + 1}$ is the circumscribed quadrilateral of $\mathcal{Q}_k$ for $k = 0,1,\dots$. The sequence terminates when a quadrilateral is reached that is not cyclic. (The circumscribed quadrilateral of a cylic quadrilateral $ABCD$ has sides that are tangent to the circumcircle of $ABCD$ at $A$, $B$, $C$ and $D$.) Prove that the sequence always terminates, except when $\mathcal{Q}_0$ is a square.
2006 Germany Team Selection Test, 3
The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ meet at a point $X$. The circumcircles of triangles $ABX$ and $CDX$ meet at a point $Y$ (apart from $X$). Let $O$ be the center of the circumcircle of the quadrilateral $ABCD$. Assume that the points $O$, $X$, $Y$ are all distinct. Show that $OY$ is perpendicular to $XY$.
2016 Junior Balkan Team Selection Tests - Romania, 4
Let $ABCD$ be a cyclic quadrilateral.$E$ is the midpoint of $(AC)$ and $F$ is the midpoint of $(BD)$ {$G$}=$AB\cap CD$ and {$H$}=$AD\cap BC$.
a)Prove that the intersections of the angle bisector of $\angle{AHB}$ and the sides $AB$ and $CD$ and the intersections of the angle bisector of$\angle{AGD}$ with $BC$ and $AD$ are the verticles of a rhombus
b)Prove that the center of this rhombus lies on $EF$
2011 Sharygin Geometry Olympiad, 7
Point $O$ is the circumcenter of acute-angled triangle $ABC$, points $A_1,B_1, C_1$ are the bases of its altitudes. Points $A', B', C'$ lying on lines $OA_1, OB_1, OC_1$ respectively are such that quadrilaterals $AOBC', BOCA', COAB'$ are cyclic. Prove that the circumcircles of triangles $AA_1A', BB_1B', CC_1C'$ have a common point.
2000 Saint Petersburg Mathematical Olympiad, 10.2
Let $AA_1$ and $BB_1$ be the altitudes of acute angled triangle $ABC$. Points $K$ and $M$ are midpoints of $AB$ and $A_1B_1$ respectively. Segments $AA_1$ and $KM$ intersect at point $L$. Prove that points $A$, $K$, $L$ and $B_1$ are noncyclic.
[I]Proposed by S. Berlov[/i]
2022 Bulgaria National Olympiad, 2
Let $ABC$ be an acute triangle and $M$ be the midpoint of $AB$. A circle through the points $B$ and $C$ intersects the segments $CM$ and $BM$ at points $P$ and $Q$ respectively. Point $K$ is symmetric to $P$ with respect to point $M$. The circumcircles of $\triangle AKM$ and $\triangle CQM$ intersect for the second time at $X$. The circumcircles of $\triangle AMC$ and $\triangle KMQ$ intersect for the second time at $Y$. The segments $BP$ and $CQ$ intersect at point $T$. Prove that the line $MT$ is tangent to the circumcircle of $\triangle MXY$.
2019 USEMO, 1
Let $ABCD$ be a cyclic quadrilateral. A circle centered at $O$ passes through $B$ and $D$ and meets lines $BA$ and $BC$ again at points $E$ and $F$ (distinct from $A,B,C$). Let $H$ denote the orthocenter of triangle $DEF.$ Prove that if lines $AC,$ $DO,$ $EF$ are concurrent, then triangle $ABC$ and $EHF$ are similar.
[i]Robin Son[/i]
2023 Germany Team Selection Test, 3
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$.
Prove that $B, C, X,$ and $Y$ are concyclic.
2021 Saudi Arabia Training Tests, 21
Let $ABCD$ be a cyclic quadrilateral with $O$ is circumcenter and $AC$ meets $BD$ at $I$ Suppose that rays $DA,CD$ meet at $E$ and rays $BA,CD$ meet at $F$. The Gauss line of $ABCD$ meets $AB,BC,CD,DA$ at points $M,N,P,Q$ respectively. Prove that the circle of diameter $OI$ is tangent to two circles $(ENQ), (FMP)$
2019 Dutch IMO TST, 1
Let $ABCD$ be a cyclic quadrilateral (In the same order) inscribed into the circle $\odot (O)$. Let $\overline{AC}$ $\cap$ $\overline{BD}$ $=$ $E$. A randome line $\ell$ through $E$ intersects $\overline{AB}$ at $P$ and $BC$ at $Q$. A circle $\omega$ touches $\ell$ at $E$ and passes through $D$. Given, $\omega$ $\cap$ $\odot (O)$ $=$ $R$. Prove, Points $B,Q,R,P$ are concyclic.
2008 Mongolia Team Selection Test, 3
Given a circumscribed trapezium $ ABCD$ with circumcircle $ \omega$ and 2 parallel sides $ AD,BC$ ($ BC<AD$). Tangent line of circle $ \omega$ at the point $ C$ meets with the line $ AD$ at point $ P$. $ PE$ is another tangent line of circle $ \omega$ and $ E\in\omega$. The line $ BP$ meets circle $ \omega$ at point $ K$. The line passing through the point $ C$ paralel to $ AB$ intersects with $ AE$ and $ AK$ at points $ N$ and $ M$ respectively. Prove that $ M$ is midpoint of segment $ CN$.