Found problems: 670
1966 IMO Shortlist, 37
Show that the four perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the respective opposite sides are concurrent.
[b]Note by Darij:[/b] A [i]cyclic quadrilateral [/i]is a quadrilateral inscribed in a circle.
2023 Malaysia IMONST 2, 6
Suppose $ABCD$ is a cyclic quadrilateral with $\angle ABC = \angle ADC = 90^{\circ}$. Let $E$ and $F$ be the feet of perpendiculars from $A$ and $C$ to $BD$ respectively. Prove that $BE = DF$.
2020 JBMO Shortlist, 3
Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \ne A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ be the circumcircle of the triangle $\triangle AEZ$. Let $D$ be the second point of intersection of $(c)$ with $ZC$ and let $F$ be the antidiametric point of $D$ with respect to $(c)$. Let $P$ be the point of intersection of the lines $FE$ and $CZ$. If the tangent to $(c)$ at $Z$ meets $PA$ at $T$, prove that the points $T$, $E$, $B$, $Z$ are concyclic.
Proposed by [i]Theoklitos Parayiou, Cyprus[/i]
2024 Bangladesh Mathematical Olympiad, P2
In a cyclic quadrilateral $ABCD$, the diagonals intersect at $E$. $F$ and $G$ are on chord $AC$ and chord $BD$ respectively such that $AF = BE$ and $DG = CE$. Prove that, $A, G, F, D$ lie on the same circle.
2011 Korea Junior Math Olympiad, 2
Let $ABCD$ be a cyclic quadrilateral inscirbed in circle $O$. Let the tangent to $O$ at $A$ meet $BC$ at $S$, and the tangent to $O$ at $B$ meet $CD$ at $T$. Circle with $S$ as its center and passing $A$ meets $BC$ at $E$, and $AE$ meets $O$ again at $F(\ne A)$. The circle with $T$ as its center and passing $B$ meets $CD$ at $K$. Let $P = BK \cap AC$. Prove that $P,F,D$ are collinear if and only if $AB = AP$.
2017 Saudi Arabia IMO TST, 2
Let $ABCD$ be a quadrilateral inscribed a circle $(O)$. Assume that $AB$ and $CD$ intersect at $E, AC$ and $BD$ intersect at $K$, and $O$ does not belong to the line $KE$. Let $G$ and $H$ be the midpoints of $AB$ and $CD$ respectively. Let $(I)$ be the circumcircle of the triangle $GKH$. Let $(I)$ and $(O)$ intersect at $M, N$ such that $MGHN$ is convex quadrilateral. Let $P$ be the intersection of $MG$ and $HN,Q$ be the intersection of $MN$ and $GH$.
a) Prove that $IK$ and $OE$ are parallel.
b) Prove that $PK$ is perpendicular to $IQ$.
2000 Junior Balkan MO, 3
A half-circle of diameter $EF$ is placed on the side $BC$ of a triangle $ABC$ and it is tangent to the sides $AB$ and $AC$ in the points $Q$ and $P$ respectively. Prove that the intersection point $K$ between the lines $EP$ and $FQ$ lies on the altitude from $A$ of the triangle $ABC$.
[i]Albania[/i]
2020 Switzerland - Final Round, 7
Let $ABCD$ be an isosceles trapezoid with bases $AD> BC$. Let $X$ be the intersection of the bisectors of $\angle BAC$ and $BC$. Let $E$ be the intersection of$ DB$ with the parallel to the bisector of $\angle CBD$ through $X$ and let $F$ be the intersection of $DC$ with the parallel to the bisector of $\angle DCB$ through $X$. Show that quadrilateral $AEFD$ is cyclic.
2004 Oral Moscow Geometry Olympiad, 5
The diagonals of the inscribed quadrilateral $ABCD$ meet at the point $M$, $\angle AMB = 60^o$. Equilateral triangles $ADK$ and $BCL$ are built outward on sides $AD$ and $BC$. Line $KL$ meets the circle circumscribed ariound $ABCD$ at points $P$ and $Q$. Prove that $PK = LQ$.
2020 South Africa National Olympiad, 5
Let $ABC$ be a triangle, and let $T$ be a point on the extension of $AB$ beyond $B$, and $U$ a point on the extension of $AC$ beyond $C$, such that $BT = CU$. Moreover, let $R$ and $S$ be points on the extensions of $AB$ and $AC$ beyond $A$ such that $AS = AT$ and $AR = AU$. Prove that $R$, $S$, $T$, $U$ lie on a circle whose centre lies on the circumcircle of $ABC$.
2004 Czech-Polish-Slovak Match, 3
A point P in the interior of a cyclic quadrilateral ABCD satisfies ∠BPC = ∠BAP + ∠PDC. Denote by E, F and G the feet of the perpendiculars from P to the lines AB, AD and DC, respectively. Show that the triangles FEG and PBC are similar.
2012 Indonesia TST, 3
Given a cyclic quadrilateral $ABCD$ with the circumcenter $O$, with $BC$ and $AD$ not parallel. Let $P$ be the intersection of $AC$ and $BD$. Let $E$ be the intersection of the rays $AB$ and $DC$. Let $I$ be the incenter of $EBC$ and the incircle of $EBC$ touches $BC$ at $T_1$. Let $J$ be the excenter of $EAD$ that touches $AD$ and the excircle of $EAD$ that touches $AD$ touches $AD$ at $T_2$. Let $Q$ be the intersection between $IT_1$ and $JT_2$. Prove that $O,P,Q$ are collinear.
2021 Nigerian MO Round 3, Problem 2
Let $B, C, D, E$ be four pairwise distinct collinear points and let $A$ be a point not on ine $BC$. Now, let the circumcircle of $\triangle ABC$ meet $AD$ and $AE$ respectively again at $F$ and $G$.
Show that $DEFG$ is cyclic if and only if $AB=AC$.
2022 Thailand TST, 2
Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.
2021 Federal Competition For Advanced Students, P2, 5
Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie.
(a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it.
(b) Show that in all other cases the four points thus obtained lie on one circle.
(Theresia Eisenkölbl)
2016 All-Russian Olympiad, 2
Diagonals $AC,BD$ of cyclic quadrilateral $ABCD$ intersect at $P$.Point $Q$ is on$BC$ (between$B$ and $C$) such that $PQ \perp AC$.Prove that the line passes through the circumcenters of triangles $APD$ and $BQD$ is parallel to $AD$.(A.Kuznetsov)
Kyiv City MO Juniors 2003+ geometry, 2012.9.5
The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the angle bisector of $\angle BAC$ intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$. The midline of $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$, the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed around the quadrilateral $BNKM$.
(Nagel Igor)
2017 Yasinsky Geometry Olympiad, 2
Medians $AM$ and $BE$ of a triangle $ABC$ intersect at $O$. The points $O, M, E, C$ lie on one circle. Find the length of $AB$ if $BE = AM =3$.
2014-2015 SDML (High School), 9
The quadrilateral $ABCD$ can be inscribed in a circle and $\angle{ABD}$ is a right angle. $M$ is the midpoint of $BD$, where $CM$ is an altitude of $\triangle{BCD}$. If $AB=14$ and $CD=6\sqrt{11}$, what [is] the length of $AD$?
$\text{(A) }36\qquad\text{(B) }38\qquad\text{(C) }41\qquad\text{(D) }42\qquad\text{(E) }44$
2017 India IMO Training Camp, 3
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$ with $AC \perp BD$. Let $P=AC \cap BD$ and $W,X,Y,Z$ be the projections of $P$ on the lines $AB, BC, CD, DA$ respectively. Let $E,F,G,H$ be the mid-points of sides $AB, BC, CD, DA$ respectively.
(a) Prove that $E,F,G,H,W,X,Y,Z$ are concyclic.
(b) If $R$ is the radius of $\Omega$ and $d$ is the distance between its centre and $P$, then find the radius of the circle in (a) in terms of $R$ and $d$.
2016 China Team Selection Test, 6
The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.
2017 Peru IMO TST, 9
Let $ABCD$ be a cyclie quadrilateral, $\omega$ be it's circumcircle and $M$ be the midpoint of the arc $AB$ of $\omega$ which does not contain the vertices $C$ and $D$. The line that passes through $M$ and the intersection point of segments $AC$ and $BD$, intersects again $\omega$ in $N$. Let $P$ and $Q$ be points in the $CD$ segment such that $\angle AQD = \angle DAP$ and $\angle BPC = \angle CBQ$. Prove that the circumcircle of $NPQ$ and $\omega$ are tangent to each other.
2024 Ukraine National Mathematical Olympiad, Problem 6
Cyclic quadrilateral $ABCD$ is such that $\angle BAD = 2\angle ADC$ and $CD = 2BC$. Let $H$ be the projection of $C$ onto $AD$. Prove that $BH \parallel CD$.
[i]Proposed by Fedir Yudin, Anton Trygub[/i]
2013 National Olympiad First Round, 21
Let $D$ and $E$ be points on side $[AB]$ of a right triangle with $m(\widehat{C})=90^\circ$ such that $|AD|=|AC|$ and $|BE|=|BC|$. Let $F$ be the second intersection point of the circumcircles of triangles $AEC$ and $BDC$. If $|CF|=2$, what is $|ED|$?
$
\textbf{(A)}\ \sqrt 2
\qquad\textbf{(B)}\ 1+\sqrt 2
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 2\sqrt 2
\qquad\textbf{(E)}\ \text{None of above}
$
2007 Canada National Olympiad, 5
Let the incircle of triangle $ ABC$ touch sides $ BC,\, CA$ and $ AB$ at $ D,\, E$ and $ F,$ respectively. Let $ \omega,\,\omega_{1},\,\omega_{2}$ and $ \omega_{3}$ denote the circumcircles of triangle $ ABC,\, AEF,\, BDF$ and $ CDE$ respectively.
Let $ \omega$ and $ \omega_{1}$ intersect at $ A$ and $ P,\,\omega$ and $ \omega_{2}$ intersect at $ B$ and $ Q,\,\omega$ and $ \omega_{3}$ intersect at $ C$ and $ R.$
$ a.$ Prove that $ \omega_{1},\,\omega_{2}$ and $ \omega_{3}$ intersect in a common point.
$ b.$ Show that $ PD,\, QE$ and $ RF$ are concurrent.