This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 670

2022 Bosnia and Herzegovina BMO TST, 3

Cyclic quadrilateral $ABCD$ is inscribed in circle $k$ with center $O$. The angle bisector of $ABD$ intersects $AD$ and $k$ in $K,M$ respectively, and the angle bisector of $CBD$ intersects $CD$ and $k$ in $L,N$ respectively. If $KL\parallel MN$ prove that the circumcircle of triangle $MON$ bisects segment $BD$.

2021 Romania Team Selection Test, 3

The external bisectors of the angles of the convex quadrilateral $ABCD$ intersect each other in $E,F,G$ and $H$ such that $A\in EH, \ B\in EF, \ C\in FG, \ D\in GH$. We know that the perpendiculars from $E$ to $AB$, from $F$ to $BC$ and from $G$ to $CD$ are concurrent. Prove that $ABCD$ is cyclic.

2015 NZMOC Camp Selection Problems, 7

Let $ABC$ be an acute-angled scalene triangle. Let $P$ be a point on the extension of $AB$ past $B$, and $Q$ a point on the extension of $AC$ past $C$ such that $BPQC$ is a cyclic quadrilateral. Let $N$ be the foot of the perpendicular from $A$ to $BC$. If $NP = NQ$ then prove that $N$ is also the centre of the circumcircle of $APQ$.

IV Soros Olympiad 1997 - 98 (Russia), 11.6

It is known that the bisector of the angle $\angle ADC$ of the inscribed quadrilateral $ABCD$ passes through the center of the circle inscribed in the triangle $ABC$. Let $M$ be an arbitrary point of the arc $ABC$ of the circle circumscribed around $ABCD$. Denote by $P$ and $Q$ the centers of the circles inscribed in the triangles $ABM$ and $BCM$. Prove that all triangles $DPQ$ obtained by moving point $M$ are similar to each other. Find the angle $\angle PDQ$ and ratio $BP : PQ$ if $\angle BAC = \alpha$, $\angle BCA = \beta$

2024 Irish Math Olympiad, P9

Let $K, L, M$ denote three points on the sides $BC$, $AB$ and $BC$ of $\triangle{ABC}$, so that $ALKM$ is a parallelogram. Points $S$ and $T$ are chosen on lines $KL$ and $KM$ respectively, so that the quadrilaterals $AKBS$ and $AKCT$ are both cyclic. Prove that $MLST$ is cyclic if and only if $K$ is the midpoint of $BC$.

1996 Romania Team Selection Test, 4

Let $ ABCD $ be a cyclic quadrilateral and let $ M $ be the set of incenters and excenters of the triangles $ BCD $, $ CDA $, $ DAB $, $ ABC $ (so 16 points in total). Prove that there exist two sets $ \mathcal{K} $ and $ \mathcal{L} $ of four parallel lines each, such that every line in $ \mathcal{K} \cup \mathcal{L} $ contains exactly four points of $ M $.

2014 ELMO Shortlist, 6

Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$. [i]Proposed by Yang Liu[/i]

2011 Sharygin Geometry Olympiad, 2

Quadrilateral $ABCD$ is circumscribed. Its incircle touches sides $AB, BC, CD, DA$ in points $K, L, M, N$ respectively. Points $A', B', C', D'$ are the midpoints of segments $LM, MN, NK, KL$. Prove that the quadrilateral formed by lines $AA', BB', CC', DD'$ is cyclic.

2014 Ukraine Team Selection Test, 8

The quadrilateral $ABCD$ is inscribed in the circle $\omega$ with the center $O$. Suppose that the angles $B$ and $C$ are obtuse and lines $AD$ and $BC$ are not parallel. Lines $AB$ and $CD$ intersect at point $E$. Let $P$ and $R$ be the feet of the perpendiculars from the point $E$ on the lines $BC$ and $AD$ respectively. $Q$ is the intersection point of $EP$ and $AD, S$ is the intersection point of $ER$ and $BC$. Let K be the midpoint of the segment $QS$ . Prove that the points $E, K$, and $O$ are collinear.

2019 Oral Moscow Geometry Olympiad, 5

On sides $AB$ and $BC$ of a non-isosceles triangle $ABC$ are selected points $C_1$ and $A_1$ such that the quadrilateral $AC_1A_1C$ is cyclic. Lines $CC_1$ and $AA_1$ intersect at point $P$. Line $BP$ intersects the circumscribed circle of triangle $ABC$ at the point $Q$. Prove that the lines $QC_1$ and $CM$, where $M$ is the midpoint of $A_1C_1$, intersect at the circumscribed circles of triangle $ABC$.

2009 IberoAmerican, 4

Given a triangle $ ABC$ of incenter $ I$, let $ P$ be the intersection of the external bisector of angle $ A$ and the circumcircle of $ ABC$, and $ J$ the second intersection of $ PI$ and the circumcircle of $ ABC$. Show that the circumcircles of triangles $ JIB$ and $ JIC$ are respectively tangent to $ IC$ and $ IB$.

2019 China Girls Math Olympiad, 1

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\odot O.$ The lines tangent to $\odot O$ at $A,B$ intersect at $L.$ $M$ is the midpoint of the segment $AB.$ The line passing through $D$ and parallel to $CM$ intersects $ \odot (CDL) $ at $F.$ Line $CF$ intersects $DM$ at $K,$ and intersects $\odot O$ at $E$ (different from point $C$). Prove that $EK=DK.$

Ukraine Correspondence MO - geometry, 2012.10

The diagonals $AC$ and $BD$ of the cyclic quadrilateral $ABCD$ intersect at a point O. It is known that $\angle BAD = 60^o$ and $AO = 3OC$. Prove that the sum of some two sides of a quadrilateral is equal to the sum of the other two sides.

2004 Switzerland - Final Round, 9

Let $ABCD$ be a cyclic quadrilateral, so that $|AB| + |CD| = |BC|$. Show that the intersection of the bisector of $\angle DAB$ and $\angle CDA$ lies on the side $BC$.

2014 India National Olympiad, 1

In a triangle $ABC$, let $D$ be the point on the segment $BC$ such that $AB+BD=AC+CD$. Suppose that the points $B$, $C$ and the centroids of triangles $ABD$ and $ACD$ lie on a circle. Prove that $AB=AC$.

2005 National Olympiad First Round, 33

Let $K$ be the intersection of diagonals of cyclic quadrilateral $ABCD$, where $|AB|=|BC|$, $|BK|=b$, and $|DK|=d$. What is $|AB|$? $ \textbf{(A)}\ \sqrt{d^2 + bd} \qquad\textbf{(B)}\ \sqrt{b^2+bd} \qquad\textbf{(C)}\ \sqrt{2bd} \qquad\textbf{(D)}\ \sqrt{2(b^2+d^2-bd)} \qquad\textbf{(E)}\ \sqrt{bd} $

2018 Swedish Mathematical Competition, 1

Let the $ABCD$ be a quadrilateral without parallel sides, inscribed in a circle. Let $P$ and $Q$ be the intersection points between the lines containing the quadrilateral opposite sides. Show that the bisectors to the angles at $P$ and $Q$ are parallel to the bisectors of the angles at the intersection point of the diagonals of the quadrilateral.

2004 India IMO Training Camp, 1

Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.

2004 India IMO Training Camp, 1

Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.

2010 Saudi Arabia BMO TST, 2

Quadrilateral $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle. Altitude $DE$ in triangle $ABD$ intersects diagonal $AC$ in $F$. Prove that $FB = BC$

2019 Bulgaria EGMO TST, 2

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\omega$ centered at $O$, whose diagonals intersect at $H$. Let $O_1$ and $O_2$ be the circumcenters of triangles $AHD$ and $BHC$. A line through $H$ intersects $\omega$ at $M_1$ and $M_2$ and intersects the circumcircles of triangles $O_1HO$ and $O_2HO$ at $N_1$ and $N_2$, respectively, so that $N_1$ and $N_2$ lie inside $\omega$. Prove that $M_1N_1 = M_2N_2$.

2001 Mexico National Olympiad, 3

$ABCD$ is a cyclic quadrilateral. $M$ is the midpoint of $CD$. The diagonals meet at $P$. The circle through $P$ which touches $CD$ at $M$ meets $AC$ again at $R$ and $BD$ again at $Q$. The point $S$ on $BD$ is such that $BS = DQ$. The line through $S$ parallel to $AB$ meets $AC$ at $T$. Show that $AT = RC$.

2005 MOP Homework, 5

Let $ABCD$ be a cyclic quadrilateral such that $AB \cdot BC=2 \cdot AD \cdot DC$. Prove that its diagonals $AC$ and $BD$ satisfy the inequality $8BD^2 \le 9AC^2$. [color=#FF0000] Moderator says: Do not double post [url]http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=590175[/url][/color]

2006 France Team Selection Test, 1

Let $ABCD$ be a square and let $\Gamma$ be the circumcircle of $ABCD$. $M$ is a point of $\Gamma$ belonging to the arc $CD$ which doesn't contain $A$. $P$ and $R$ are respectively the intersection points of $(AM)$ with $[BD]$ and $[CD]$, $Q$ and $S$ are respectively the intersection points of $(BM)$ with $[AC]$ and $[DC]$. Prove that $(PS)$ and $(QR)$ are perpendicular.

2022 Saudi Arabia BMO + EGMO TST, 1.2

Point $M$ on side $AB$ of quadrilateral $ABCD$ is such that quadrilaterals $AMCD$ and $BMDC$ are circumscribed around circles centered at $O_1$ and $O_2$ respectively. Line $O_1O_2$ cuts an isosceles triangle with vertex $M$ from angle $CMD$. prove that $ABCD$ is a cyclc quadrilateral.