This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 125

2011 Today's Calculation Of Integral, 697

Find the volume of the solid of the domain expressed by the inequality $x^2-x\leq y\leq x$, generated by a rotation about the line $y=x.$

2011 Today's Calculation Of Integral, 699

Find the volume of the part bounded by $z=x+y,\ z=x^2+y^2$ in the $xyz$ space.

2014 AMC 12/AHSME, 20

For how many positive integers $x$ is $\log_{10}{(x-40)} + \log_{10}{(60-x)} < 2$? ${ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}}\ 20\qquad\textbf{(E)}\ \text{infinitely many} $

1996 Romania Team Selection Test, 12

Let $ n\geq 3 $ be an integer and let $ p\geq 2n-3 $ be a prime number. For a set $ M $ of $ n $ points in the plane, no 3 collinear, let $ f: M\to \{0,1,\ldots, p-1\} $ be a function such that (i) exactly one point of $ M $ maps to 0, (ii) if a circle $ \mathcal{C} $ passes through 3 distinct points of $ A,B,C\in M $ then $ \sum_{P\in M\cap \mathcal{C}} f(P) \equiv 0 \pmod p $. Prove that all the points in $ M $ lie on a circle.

2023 Switzerland - Final Round, 5

Let $D$ be the set of real numbers excluding $-1$. Find all functions $f: D \to D$ such that for all $x,y \in D$ satisfying $x \neq 0$ and $y \neq -x$, the equality $$(f(f(x))+y)f \left(\frac{y}{x} \right)+f(f(y))=x$$ holds.

1993 All-Russian Olympiad, 3

Find all functions $f(x)$ with the domain of all positive real numbers, such that for any positive numbers $x$ and $y$, we have $f(x^y)=f(x)^{f(y)}$.

2004 AMC 12/AHSME, 16

The set of all real numbers $ x$ for which \[ \log_{2004}(\log_{2003}(\log_{2002}(\log_{2001}{x}))) \]is defined is $ \{x|x > c\}$. What is the value of $ c$? $ \textbf{(A)}\ 0\qquad \textbf{(B)}\ 2001^{2002} \qquad \textbf{(C)}\ 2002^{2003} \qquad \textbf{(D)}\ 2003^{2004} \qquad \textbf{(E)}\ 2001^{2002^{2003}}$

2009 Today's Calculation Of Integral, 514

Prove the following inequalities: (1) $ x\minus{}\sin x\leq \tan x\minus{}x\ \ \left(0\leq x<\frac{\pi}{2}\right)$ (2) $ \int_0^x \cos (\tan t\minus{}t)\ dt\leq \sin (\sin x)\plus{}\frac 12 \left(x\minus{}\frac{\sin 2x}{2}\right)\ \left(0\leq x\leq \frac{\pi}{3}\right)$

1989 IMO Longlists, 97

An arithmetic function is a real-valued function whose domain is the set of positive integers. Define the convolution product of two arithmetic functions $ f$ and $ g$ to be the arithmetic function $ f * g$, where \[ (f * g)(n) \equal{} \sum_{ij\equal{}n} f(i) \cdot g(j),\] and $ f^{*k} \equal{} f * f * \ldots * f$ ($ k$ times) We say that two arithmetic functions $ f$ and $ g$ are dependent if there exists a nontrivial polynomial of two variables $ P(x, y) \equal{} \sum_{i,j} a_{ij} x^i y^j$ with real coefficients such that \[ P(f,g) \equal{} \sum_{i,j} a_{ij} f^{*i} * g^{*j} \equal{} 0,\] and say that they are independent if they are not dependent. Let $ p$ and $ q$ be two distinct primes and set \[ f_1(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} p, \\ 0 & \text{ otherwise}. \end{cases}\] \[ f_2(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} q, \\ 0 & \text{ otherwise}. \end{cases}\] Prove that $ f_1$ and $ f_2$ are independent.

2009 IMS, 3

Let $ A\subset \mathbb C$ be a closed and countable set. Prove that if the analytic function $ f: \mathbb C\backslash A\longrightarrow \mathbb C$ is bounded, then $ f$ is constant.

1984 IMO Longlists, 38

Determine all continuous functions $f: \mathbb R \to \mathbb R$ such that \[f(x + y)f(x - y) = (f(x)f(y))^2, \quad \forall(x, y) \in\mathbb{R}^2.\]

1988 Polish MO Finals, 1

The real numbers $x_1, x_2, ... , x_n$ belong to the interval $(0,1)$ and satisfy $x_1 + x_2 + ... + x_n = m + r$, where $m$ is an integer and $r \in [0,1)$. Show that $x_1 ^2 + x_2 ^2 + ... + x_n ^2 \leq m + r^2$.

2009 Romania Team Selection Test, 1

Given two (identical) polygonal domains in the Euclidean plane, it is not possible in general to superpose the two using only translations and rotations. Prove that this can however be achieved by splitting one of the domains into a finite number of polygonal subdomains which then fit together, via translations and rotations in the plane, to recover the other domain.

2006 Greece Junior Math Olympiad, 4

If $x , y$ are real numbers such that $x^2 + xy + y^2 = 1$ , find the least and the greatest value( minimum and maximum) of the expression $K = x^3y + xy^3$ [u]Babis[/u] [b] Sorry !!! I forgot to write that these 4 problems( 4 topics) were [u]JUNIOR LEVEL[/u][/b]

2010 Today's Calculation Of Integral, 578

Find the range of $ k$ for which the following inequality holds for $ 0\leq x\leq 1$. \[ \int_0^x \frac {dt}{\sqrt {(3 \plus{} t^2)^3}}\geq k\int _0^x \frac {dt}{\sqrt {3 \plus{} t^2}}\] If necessary, you may use $ \ln 3 \equal{} 1.10$.

2006 Switzerland Team Selection Test, 3

Find all the functions $f : \mathbb{R} \to \mathbb{R}$ satisfying for all $x,y \in \mathbb{R}$ $f(f(x)-y^2) = f(x)^2 - 2f(x)y^2 + f(f(y))$.

1991 Arnold's Trivium, 64

Tags: function , domain , algebra
Does the Cauchy problem $u|_{y=x^2}=1$, $(\nabla u)^2=1$ have a smooth solution in the domain $y\ge x^2$? In the domain $y\le x^2$?

2011 Singapore MO Open, 5

Find all pairs of positive integers $(m,n)$ such that \[m+n-\frac{3mn}{m+n}=\frac{2011}{3}.\]

2014 Contests, 1

Let $a$, $b$, $c$, $d$ be real numbers such that $b-d \ge 5$ and all zeros $x_1, x_2, x_3,$ and $x_4$ of the polynomial $P(x)=x^4+ax^3+bx^2+cx+d$ are real. Find the smallest value the product $(x_1^2+1)(x_2^2+1)(x_3^2+1)(x_4^2+1)$ can take.

1990 IMO Longlists, 89

Let $n$ be a positive integer. $S_1, S_2, \ldots, S_n$ are pairwise non-intersecting sets, and $S_k $ has exactly $k$ elements $(k = 1, 2, \ldots, n)$. Define $S = S_1\cup S_2\cup\cdots \cup S_n$. The function $f: S \to S $ maps all elements in $S_k$ to a fixed element of $S_k$, $k = 1, 2, \ldots, n$. Find the number of functions $g: S \to S$ satisfying $f(g(f(x))) = f(x).$

2011 AMC 10, 25

Let $R$ be a square region and $n\ge4$ an integer. A point $X$ in the interior of $R$ is called $n\text{-}ray$ partitional if there are $n$ rays emanating from $X$ that divide $R$ into $n$ triangles of equal area. How many points are 100-ray partitional but not 60-ray partitional? $\textbf{(A)}\,1500 \qquad\textbf{(B)}\,1560 \qquad\textbf{(C)}\,2320 \qquad\textbf{(D)}\,2480 \qquad\textbf{(E)}\,2500$

2006 Czech-Polish-Slovak Match, 1

Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.

2007 QEDMO 5th, 5

Let $ a$, $ b$, $ c$ be three integers. Prove that there exist six integers $ x$, $ y$, $ z$, $ x^{\prime}$, $ y^{\prime}$, $ z^{\prime}$ such that $ a\equal{}yz^{\prime}\minus{}zy^{\prime};\ \ \ \ \ \ \ \ \ \ b\equal{}zx^{\prime}\minus{}xz^{\prime};\ \ \ \ \ \ \ \ \ \ c\equal{}xy^{\prime}\minus{}yx^{\prime}$.

2011 Today's Calculation Of Integral, 687

(1) Let $x>0,\ y$ be real numbers. For variable $t$, find the difference of Maximum and minimum value of the quadratic function $f(t)=xt^2+yt$ in $0\leq t\leq 1$. (2) Let $S$ be the domain of the points $(x,\ y)$ in the coordinate plane forming the following condition: For $x>0$ and all real numbers $t$ with $0\leq t\leq 1$ , there exists real number $z$ for which $0\leq xt^2+yt+z\leq 1$ . Sketch the outline of $S$. (3) Let $V$ be the domain of the points $(x,\ y,\ z) $ in the coordinate space forming the following condition: For $0\leq x\leq 1$ and for all real numbers $t$ with $0\leq t\leq 1$, $0\leq xt^2+yt+z\leq 1$ holds. Find the volume of $V$. [i]2011 Tokyo University entrance exam/Science, Problem 6[/i]

2011 Math Prize For Girls Problems, 14

Tags: domain , function , algebra
If $0 \le p \le 1$ and $0 \le q \le 1$, define $F(p, q)$ by \[ F(p, q) = -2pq + 3p(1-q) + 3(1-p)q - 4(1-p)(1-q). \] Define $G(p)$ to be the maximum of $F(p, q)$ over all $q$ (in the interval $0 \le q \le 1$). What is the value of $p$ (in the interval $0 \le p \le 1$) that minimizes $G(p)$?